| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfbi3dc | Unicode version | ||
| Description: An alternate definition of the biconditional for decidable propositions. Theorem *5.23 of [WhiteheadRussell] p. 124, but with decidability conditions. (Contributed by Jim Kingdon, 5-May-2018.) | 
| Ref | Expression | 
|---|---|
| dfbi3dc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dcn 843 | 
. . . 4
 | |
| 2 | xordc 1403 | 
. . . . 5
 | |
| 3 | 2 | imp 124 | 
. . . 4
 | 
| 4 | 1, 3 | sylan2 286 | 
. . 3
 | 
| 5 | pm5.18dc 884 | 
. . . 4
 | |
| 6 | 5 | imp 124 | 
. . 3
 | 
| 7 | notnotbdc 873 | 
. . . . . 6
 | |
| 8 | 7 | anbi2d 464 | 
. . . . 5
 | 
| 9 | ancom 266 | 
. . . . . 6
 | |
| 10 | 9 | a1i 9 | 
. . . . 5
 | 
| 11 | 8, 10 | orbi12d 794 | 
. . . 4
 | 
| 12 | 11 | adantl 277 | 
. . 3
 | 
| 13 | 4, 6, 12 | 3bitr4d 220 | 
. 2
 | 
| 14 | 13 | ex 115 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-xor 1387 | 
| This theorem is referenced by: pm5.24dc 1409 | 
| Copyright terms: Public domain | W3C validator |