Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfbi3dc | Unicode version |
Description: An alternate definition of the biconditional for decidable propositions. Theorem *5.23 of [WhiteheadRussell] p. 124, but with decidability conditions. (Contributed by Jim Kingdon, 5-May-2018.) |
Ref | Expression |
---|---|
dfbi3dc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcn 842 | . . . 4 DECID DECID | |
2 | xordc 1392 | . . . . 5 DECID DECID | |
3 | 2 | imp 124 | . . . 4 DECID DECID |
4 | 1, 3 | sylan2 286 | . . 3 DECID DECID |
5 | pm5.18dc 883 | . . . 4 DECID DECID | |
6 | 5 | imp 124 | . . 3 DECID DECID |
7 | notnotbdc 872 | . . . . . 6 DECID | |
8 | 7 | anbi2d 464 | . . . . 5 DECID |
9 | ancom 266 | . . . . . 6 | |
10 | 9 | a1i 9 | . . . . 5 DECID |
11 | 8, 10 | orbi12d 793 | . . . 4 DECID |
12 | 11 | adantl 277 | . . 3 DECID DECID |
13 | 4, 6, 12 | 3bitr4d 220 | . 2 DECID DECID |
14 | 13 | ex 115 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-xor 1376 |
This theorem is referenced by: pm5.24dc 1398 |
Copyright terms: Public domain | W3C validator |