Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfbi3dc | Unicode version |
Description: An alternate definition of the biconditional for decidable propositions. Theorem *5.23 of [WhiteheadRussell] p. 124, but with decidability conditions. (Contributed by Jim Kingdon, 5-May-2018.) |
Ref | Expression |
---|---|
dfbi3dc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcn 832 | . . . 4 DECID DECID | |
2 | xordc 1382 | . . . . 5 DECID DECID | |
3 | 2 | imp 123 | . . . 4 DECID DECID |
4 | 1, 3 | sylan2 284 | . . 3 DECID DECID |
5 | pm5.18dc 873 | . . . 4 DECID DECID | |
6 | 5 | imp 123 | . . 3 DECID DECID |
7 | notnotbdc 862 | . . . . . 6 DECID | |
8 | 7 | anbi2d 460 | . . . . 5 DECID |
9 | ancom 264 | . . . . . 6 | |
10 | 9 | a1i 9 | . . . . 5 DECID |
11 | 8, 10 | orbi12d 783 | . . . 4 DECID |
12 | 11 | adantl 275 | . . 3 DECID DECID |
13 | 4, 6, 12 | 3bitr4d 219 | . 2 DECID DECID |
14 | 13 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-xor 1366 |
This theorem is referenced by: pm5.24dc 1388 |
Copyright terms: Public domain | W3C validator |