| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 |
. 2
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 3bitr4d.3 |
. . 3
| |
| 4 | 2, 3 | bitr4d 191 |
. 2
|
| 5 | 1, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dfbi3dc 1416 xordidc 1418 19.32dc 1701 r19.32vdc 2654 opbrop 4753 fvopab3g 5651 respreima 5707 fmptco 5745 cocan1 5855 cocan2 5856 brtposg 6339 nnmword 6603 swoer 6647 erth 6665 brecop 6711 ecopovsymg 6720 xpdom2 6925 pw2f1odclem 6930 opabfi 7034 ctssdccl 7212 omniwomnimkv 7268 nninfwlporlemd 7273 pitric 7433 ltexpi 7449 ltapig 7450 ltmpig 7451 ltanqg 7512 ltmnqg 7513 enq0breq 7548 genpassl 7636 genpassu 7637 1idprl 7702 1idpru 7703 caucvgprlemcanl 7756 ltasrg 7882 prsrlt 7899 caucvgsrlemoffcau 7910 ltpsrprg 7915 map2psrprg 7917 axpre-ltadd 7998 subsub23 8276 leadd1 8502 lemul1 8665 reapmul1lem 8666 reapmul1 8667 reapadd1 8668 apsym 8678 apadd1 8680 apti 8694 apcon4bid 8696 lediv1 8941 lt2mul2div 8951 lerec 8956 ltdiv2 8959 lediv2 8963 le2msq 8973 avgle1 9277 avgle2 9278 nn01to3 9737 qapne 9759 cnref1o 9771 xleneg 9958 xsubge0 10002 xleaddadd 10008 iooneg 10109 iccneg 10110 iccshftr 10115 iccshftl 10117 iccdil 10119 icccntr 10121 fzsplit2 10171 fzaddel 10180 fzrev 10205 elfzo 10270 nelfzo 10273 fzon 10288 elfzom1b 10356 ioo0 10400 ico0 10402 ioc0 10403 flqlt 10424 negqmod0 10474 frec2uzled 10572 expeq0 10713 nn0leexp2 10853 nn0opthlem1d 10863 leisorel 10980 cjreb 11148 ltmininf 11517 minclpr 11519 xrmaxlesup 11541 xrltmininf 11552 xrminltinf 11554 tanaddaplem 12020 nndivdvds 12078 moddvds 12081 modmulconst 12105 oddm1even 12157 ltoddhalfle 12175 bitsp1 12233 dvdssq 12323 phiprmpw 12515 eulerthlemh 12524 odzdvds 12539 pc2dvds 12624 1arith 12661 issubg3 13499 eqgid 13533 resghm2b 13569 conjghm 13583 conjnmzb 13587 ablsubsub23 13632 issrgid 13714 isringid 13758 opprsubgg 13817 opprunitd 13843 crngunit 13844 unitpropdg 13881 issubrng 13932 opprsubrngg 13944 lsslss 14114 lsspropdg 14164 rspsn 14267 znidom 14390 cnrest2 14679 cnptoprest 14682 cnptoprest2 14683 lmss 14689 lmff 14692 txlm 14722 ismet2 14797 blres 14877 xmetec 14880 bdbl 14946 metrest 14949 cnbl0 14977 cnblcld 14978 reopnap 14989 bl2ioo 14993 limcdifap 15105 efle 15219 reapef 15221 logleb 15318 logrpap0b 15319 cxplt 15359 cxple 15360 rpcxple2 15361 rpcxplt2 15362 cxplt3 15363 cxple3 15364 apcxp2 15382 logbleb 15404 logblt 15405 lgsdilem 15475 lgsne0 15486 lgsquadlem1 15525 lgsquadlem2 15526 m1lgs 15533 2lgslem1a 15536 2lgs 15552 iooref1o 15935 |
| Copyright terms: Public domain | W3C validator |