| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 |
. 2
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 3bitr4d.3 |
. . 3
| |
| 4 | 2, 3 | bitr4d 191 |
. 2
|
| 5 | 1, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifpdfbidc 991 dfbi3dc 1439 xordidc 1441 19.32dc 1725 r19.32vdc 2680 opbrop 4797 fvopab3g 5706 respreima 5762 fmptco 5800 cocan1 5910 cocan2 5911 brtposg 6398 nnmword 6662 swoer 6706 erth 6724 brecop 6770 ecopovsymg 6779 xpdom2 6986 pw2f1odclem 6991 opabfi 7096 ctssdccl 7274 omniwomnimkv 7330 nninfwlporlemd 7335 pitric 7504 ltexpi 7520 ltapig 7521 ltmpig 7522 ltanqg 7583 ltmnqg 7584 enq0breq 7619 genpassl 7707 genpassu 7708 1idprl 7773 1idpru 7774 caucvgprlemcanl 7827 ltasrg 7953 prsrlt 7970 caucvgsrlemoffcau 7981 ltpsrprg 7986 map2psrprg 7988 axpre-ltadd 8069 subsub23 8347 leadd1 8573 lemul1 8736 reapmul1lem 8737 reapmul1 8738 reapadd1 8739 apsym 8749 apadd1 8751 apti 8765 apcon4bid 8767 lediv1 9012 lt2mul2div 9022 lerec 9027 ltdiv2 9030 lediv2 9034 le2msq 9044 avgle1 9348 avgle2 9349 nn01to3 9808 qapne 9830 cnref1o 9842 xleneg 10029 xsubge0 10073 xleaddadd 10079 iooneg 10180 iccneg 10181 iccshftr 10186 iccshftl 10188 iccdil 10190 icccntr 10192 fzsplit2 10242 fzaddel 10251 fzrev 10276 elfzo 10341 nelfzo 10344 fzon 10359 elfzom1b 10430 ioo0 10474 ico0 10476 ioc0 10477 flqlt 10498 negqmod0 10548 frec2uzled 10646 expeq0 10787 nn0leexp2 10927 nn0opthlem1d 10937 leisorel 11054 cjreb 11372 ltmininf 11741 minclpr 11743 xrmaxlesup 11765 xrltmininf 11776 xrminltinf 11778 tanaddaplem 12244 nndivdvds 12302 moddvds 12305 modmulconst 12329 oddm1even 12381 ltoddhalfle 12399 bitsp1 12457 dvdssq 12547 phiprmpw 12739 eulerthlemh 12748 odzdvds 12763 pc2dvds 12848 1arith 12885 issubg3 13724 eqgid 13758 resghm2b 13794 conjghm 13808 conjnmzb 13812 ablsubsub23 13857 issrgid 13939 isringid 13983 opprsubgg 14042 opprunitd 14068 crngunit 14069 unitpropdg 14106 issubrng 14157 opprsubrngg 14169 lsslss 14339 lsspropdg 14389 rspsn 14492 znidom 14615 cnrest2 14904 cnptoprest 14907 cnptoprest2 14908 lmss 14914 lmff 14917 txlm 14947 ismet2 15022 blres 15102 xmetec 15105 bdbl 15171 metrest 15174 cnbl0 15202 cnblcld 15203 reopnap 15214 bl2ioo 15218 limcdifap 15330 efle 15444 reapef 15446 logleb 15543 logrpap0b 15544 cxplt 15584 cxple 15585 rpcxple2 15586 rpcxplt2 15587 cxplt3 15588 cxple3 15589 apcxp2 15607 logbleb 15629 logblt 15630 lgsdilem 15700 lgsne0 15711 lgsquadlem1 15750 lgsquadlem2 15751 m1lgs 15758 2lgslem1a 15761 2lgs 15777 ausgrusgrben 15960 iooref1o 16361 |
| Copyright terms: Public domain | W3C validator |