Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | |
3bitr4d.2 | |
3bitr4d.3 |
Ref | Expression |
---|---|
3bitr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 | |
2 | 3bitr4d.1 | . . 3 | |
3 | 3bitr4d.3 | . . 3 | |
4 | 2, 3 | bitr4d 191 | . 2 |
5 | 1, 4 | bitrd 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dfbi3dc 1397 xordidc 1399 19.32dc 1677 r19.32vdc 2624 opbrop 4699 fvopab3g 5581 respreima 5636 fmptco 5674 cocan1 5778 cocan2 5779 brtposg 6245 nnmword 6509 swoer 6553 erth 6569 brecop 6615 ecopovsymg 6624 xpdom2 6821 ctssdccl 7100 omniwomnimkv 7155 nninfwlporlemd 7160 pitric 7295 ltexpi 7311 ltapig 7312 ltmpig 7313 ltanqg 7374 ltmnqg 7375 enq0breq 7410 genpassl 7498 genpassu 7499 1idprl 7564 1idpru 7565 caucvgprlemcanl 7618 ltasrg 7744 prsrlt 7761 caucvgsrlemoffcau 7772 ltpsrprg 7777 map2psrprg 7779 axpre-ltadd 7860 subsub23 8136 leadd1 8361 lemul1 8524 reapmul1lem 8525 reapmul1 8526 reapadd1 8527 apsym 8537 apadd1 8539 apti 8553 apcon4bid 8555 lediv1 8797 lt2mul2div 8807 lerec 8812 ltdiv2 8815 lediv2 8819 le2msq 8829 avgle1 9130 avgle2 9131 nn01to3 9588 qapne 9610 cnref1o 9621 xleneg 9806 xsubge0 9850 xleaddadd 9856 iooneg 9957 iccneg 9958 iccshftr 9963 iccshftl 9965 iccdil 9967 icccntr 9969 fzsplit2 10018 fzaddel 10027 fzrev 10052 elfzo 10117 fzon 10134 elfzom1b 10197 ioo0 10228 ico0 10230 ioc0 10231 flqlt 10251 negqmod0 10299 frec2uzled 10397 expeq0 10519 nn0leexp2 10657 nn0opthlem1d 10666 leisorel 10783 cjreb 10841 ltmininf 11209 minclpr 11211 xrmaxlesup 11233 xrltmininf 11244 xrminltinf 11246 tanaddaplem 11712 nndivdvds 11769 moddvds 11772 modmulconst 11796 oddm1even 11845 ltoddhalfle 11863 dvdssq 11997 phiprmpw 12187 eulerthlemh 12196 odzdvds 12210 pc2dvds 12294 1arith 12330 ablsubsub23 12924 issrgid 12957 isringid 13001 cnrest2 13287 cnptoprest 13290 cnptoprest2 13291 lmss 13297 lmff 13300 txlm 13330 ismet2 13405 blres 13485 xmetec 13488 bdbl 13554 metrest 13557 cnbl0 13585 cnblcld 13586 reopnap 13589 bl2ioo 13593 limcdifap 13682 efle 13748 reapef 13750 logleb 13847 logrpap0b 13848 cxplt 13887 cxple 13888 rpcxple2 13889 rpcxplt2 13890 cxplt3 13891 cxple3 13892 apcxp2 13909 logbleb 13930 logblt 13931 lgsdilem 13979 lgsne0 13990 iooref1o 14323 |
Copyright terms: Public domain | W3C validator |