![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3bitr4d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitr4d 191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dfbi3dc 1397 xordidc 1399 19.32dc 1679 r19.32vdc 2626 opbrop 4707 fvopab3g 5591 respreima 5646 fmptco 5684 cocan1 5790 cocan2 5791 brtposg 6257 nnmword 6521 swoer 6565 erth 6581 brecop 6627 ecopovsymg 6636 xpdom2 6833 ctssdccl 7112 omniwomnimkv 7167 nninfwlporlemd 7172 pitric 7322 ltexpi 7338 ltapig 7339 ltmpig 7340 ltanqg 7401 ltmnqg 7402 enq0breq 7437 genpassl 7525 genpassu 7526 1idprl 7591 1idpru 7592 caucvgprlemcanl 7645 ltasrg 7771 prsrlt 7788 caucvgsrlemoffcau 7799 ltpsrprg 7804 map2psrprg 7806 axpre-ltadd 7887 subsub23 8164 leadd1 8389 lemul1 8552 reapmul1lem 8553 reapmul1 8554 reapadd1 8555 apsym 8565 apadd1 8567 apti 8581 apcon4bid 8583 lediv1 8828 lt2mul2div 8838 lerec 8843 ltdiv2 8846 lediv2 8850 le2msq 8860 avgle1 9161 avgle2 9162 nn01to3 9619 qapne 9641 cnref1o 9652 xleneg 9839 xsubge0 9883 xleaddadd 9889 iooneg 9990 iccneg 9991 iccshftr 9996 iccshftl 9998 iccdil 10000 icccntr 10002 fzsplit2 10052 fzaddel 10061 fzrev 10086 elfzo 10151 fzon 10168 elfzom1b 10231 ioo0 10262 ico0 10264 ioc0 10265 flqlt 10285 negqmod0 10333 frec2uzled 10431 expeq0 10553 nn0leexp2 10692 nn0opthlem1d 10702 leisorel 10819 cjreb 10877 ltmininf 11245 minclpr 11247 xrmaxlesup 11269 xrltmininf 11280 xrminltinf 11282 tanaddaplem 11748 nndivdvds 11805 moddvds 11808 modmulconst 11832 oddm1even 11882 ltoddhalfle 11900 dvdssq 12034 phiprmpw 12224 eulerthlemh 12233 odzdvds 12247 pc2dvds 12331 1arith 12367 issubg3 13057 eqgid 13090 ablsubsub23 13133 issrgid 13169 isringid 13213 opprunitd 13284 crngunit 13285 unitpropdg 13322 lsslss 13473 cnrest2 13775 cnptoprest 13778 cnptoprest2 13779 lmss 13785 lmff 13788 txlm 13818 ismet2 13893 blres 13973 xmetec 13976 bdbl 14042 metrest 14045 cnbl0 14073 cnblcld 14074 reopnap 14077 bl2ioo 14081 limcdifap 14170 efle 14236 reapef 14238 logleb 14335 logrpap0b 14336 cxplt 14375 cxple 14376 rpcxple2 14377 rpcxplt2 14378 cxplt3 14379 cxple3 14380 apcxp2 14397 logbleb 14418 logblt 14419 lgsdilem 14467 lgsne0 14478 m1lgs 14491 iooref1o 14821 |
Copyright terms: Public domain | W3C validator |