| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 |
. 2
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 3bitr4d.3 |
. . 3
| |
| 4 | 2, 3 | bitr4d 191 |
. 2
|
| 5 | 1, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dfbi3dc 1417 xordidc 1419 19.32dc 1702 r19.32vdc 2655 opbrop 4754 fvopab3g 5652 respreima 5708 fmptco 5746 cocan1 5856 cocan2 5857 brtposg 6340 nnmword 6604 swoer 6648 erth 6666 brecop 6712 ecopovsymg 6721 xpdom2 6926 pw2f1odclem 6931 opabfi 7035 ctssdccl 7213 omniwomnimkv 7269 nninfwlporlemd 7274 pitric 7434 ltexpi 7450 ltapig 7451 ltmpig 7452 ltanqg 7513 ltmnqg 7514 enq0breq 7549 genpassl 7637 genpassu 7638 1idprl 7703 1idpru 7704 caucvgprlemcanl 7757 ltasrg 7883 prsrlt 7900 caucvgsrlemoffcau 7911 ltpsrprg 7916 map2psrprg 7918 axpre-ltadd 7999 subsub23 8277 leadd1 8503 lemul1 8666 reapmul1lem 8667 reapmul1 8668 reapadd1 8669 apsym 8679 apadd1 8681 apti 8695 apcon4bid 8697 lediv1 8942 lt2mul2div 8952 lerec 8957 ltdiv2 8960 lediv2 8964 le2msq 8974 avgle1 9278 avgle2 9279 nn01to3 9738 qapne 9760 cnref1o 9772 xleneg 9959 xsubge0 10003 xleaddadd 10009 iooneg 10110 iccneg 10111 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 fzsplit2 10172 fzaddel 10181 fzrev 10206 elfzo 10271 nelfzo 10274 fzon 10289 elfzom1b 10358 ioo0 10402 ico0 10404 ioc0 10405 flqlt 10426 negqmod0 10476 frec2uzled 10574 expeq0 10715 nn0leexp2 10855 nn0opthlem1d 10865 leisorel 10982 cjreb 11177 ltmininf 11546 minclpr 11548 xrmaxlesup 11570 xrltmininf 11581 xrminltinf 11583 tanaddaplem 12049 nndivdvds 12107 moddvds 12110 modmulconst 12134 oddm1even 12186 ltoddhalfle 12204 bitsp1 12262 dvdssq 12352 phiprmpw 12544 eulerthlemh 12553 odzdvds 12568 pc2dvds 12653 1arith 12690 issubg3 13528 eqgid 13562 resghm2b 13598 conjghm 13612 conjnmzb 13616 ablsubsub23 13661 issrgid 13743 isringid 13787 opprsubgg 13846 opprunitd 13872 crngunit 13873 unitpropdg 13910 issubrng 13961 opprsubrngg 13973 lsslss 14143 lsspropdg 14193 rspsn 14296 znidom 14419 cnrest2 14708 cnptoprest 14711 cnptoprest2 14712 lmss 14718 lmff 14721 txlm 14751 ismet2 14826 blres 14906 xmetec 14909 bdbl 14975 metrest 14978 cnbl0 15006 cnblcld 15007 reopnap 15018 bl2ioo 15022 limcdifap 15134 efle 15248 reapef 15250 logleb 15347 logrpap0b 15348 cxplt 15388 cxple 15389 rpcxple2 15390 rpcxplt2 15391 cxplt3 15392 cxple3 15393 apcxp2 15411 logbleb 15433 logblt 15434 lgsdilem 15504 lgsne0 15515 lgsquadlem1 15554 lgsquadlem2 15555 m1lgs 15562 2lgslem1a 15565 2lgs 15581 iooref1o 15973 |
| Copyright terms: Public domain | W3C validator |