Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | |
3bitr4d.2 | |
3bitr4d.3 |
Ref | Expression |
---|---|
3bitr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 | |
2 | 3bitr4d.1 | . . 3 | |
3 | 3bitr4d.3 | . . 3 | |
4 | 2, 3 | bitr4d 190 | . 2 |
5 | 1, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dfbi3dc 1387 xordidc 1389 19.32dc 1667 r19.32vdc 2614 opbrop 4682 fvopab3g 5558 respreima 5612 fmptco 5650 cocan1 5754 cocan2 5755 brtposg 6218 nnmword 6482 swoer 6525 erth 6541 brecop 6587 ecopovsymg 6596 xpdom2 6793 ctssdccl 7072 omniwomnimkv 7127 pitric 7258 ltexpi 7274 ltapig 7275 ltmpig 7276 ltanqg 7337 ltmnqg 7338 enq0breq 7373 genpassl 7461 genpassu 7462 1idprl 7527 1idpru 7528 caucvgprlemcanl 7581 ltasrg 7707 prsrlt 7724 caucvgsrlemoffcau 7735 ltpsrprg 7740 map2psrprg 7742 axpre-ltadd 7823 subsub23 8099 leadd1 8324 lemul1 8487 reapmul1lem 8488 reapmul1 8489 reapadd1 8490 apsym 8500 apadd1 8502 apti 8516 apcon4bid 8518 lediv1 8760 lt2mul2div 8770 lerec 8775 ltdiv2 8778 lediv2 8782 le2msq 8792 avgle1 9093 avgle2 9094 nn01to3 9551 qapne 9573 cnref1o 9584 xleneg 9769 xsubge0 9813 xleaddadd 9819 iooneg 9920 iccneg 9921 iccshftr 9926 iccshftl 9928 iccdil 9930 icccntr 9932 fzsplit2 9981 fzaddel 9990 fzrev 10015 elfzo 10080 fzon 10097 elfzom1b 10160 ioo0 10191 ico0 10193 ioc0 10194 flqlt 10214 negqmod0 10262 frec2uzled 10360 expeq0 10482 nn0leexp2 10620 nn0opthlem1d 10629 leisorel 10746 cjreb 10804 ltmininf 11172 minclpr 11174 xrmaxlesup 11196 xrltmininf 11207 xrminltinf 11209 tanaddaplem 11675 nndivdvds 11732 moddvds 11735 modmulconst 11759 oddm1even 11808 ltoddhalfle 11826 dvdssq 11960 phiprmpw 12150 eulerthlemh 12159 odzdvds 12173 pc2dvds 12257 1arith 12293 cnrest2 12836 cnptoprest 12839 cnptoprest2 12840 lmss 12846 lmff 12849 txlm 12879 ismet2 12954 blres 13034 xmetec 13037 bdbl 13103 metrest 13106 cnbl0 13134 cnblcld 13135 reopnap 13138 bl2ioo 13142 limcdifap 13231 efle 13297 reapef 13299 logleb 13396 logrpap0b 13397 cxplt 13436 cxple 13437 rpcxple2 13438 rpcxplt2 13439 cxplt3 13440 cxple3 13441 apcxp2 13458 logbleb 13479 logblt 13480 lgsdilem 13528 lgsne0 13539 iooref1o 13873 |
Copyright terms: Public domain | W3C validator |