| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.2 |
. 2
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 3bitr4d.3 |
. . 3
| |
| 4 | 2, 3 | bitr4d 191 |
. 2
|
| 5 | 1, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dfbi3dc 1417 xordidc 1419 19.32dc 1703 r19.32vdc 2657 opbrop 4772 fvopab3g 5675 respreima 5731 fmptco 5769 cocan1 5879 cocan2 5880 brtposg 6363 nnmword 6627 swoer 6671 erth 6689 brecop 6735 ecopovsymg 6744 xpdom2 6951 pw2f1odclem 6956 opabfi 7061 ctssdccl 7239 omniwomnimkv 7295 nninfwlporlemd 7300 pitric 7469 ltexpi 7485 ltapig 7486 ltmpig 7487 ltanqg 7548 ltmnqg 7549 enq0breq 7584 genpassl 7672 genpassu 7673 1idprl 7738 1idpru 7739 caucvgprlemcanl 7792 ltasrg 7918 prsrlt 7935 caucvgsrlemoffcau 7946 ltpsrprg 7951 map2psrprg 7953 axpre-ltadd 8034 subsub23 8312 leadd1 8538 lemul1 8701 reapmul1lem 8702 reapmul1 8703 reapadd1 8704 apsym 8714 apadd1 8716 apti 8730 apcon4bid 8732 lediv1 8977 lt2mul2div 8987 lerec 8992 ltdiv2 8995 lediv2 8999 le2msq 9009 avgle1 9313 avgle2 9314 nn01to3 9773 qapne 9795 cnref1o 9807 xleneg 9994 xsubge0 10038 xleaddadd 10044 iooneg 10145 iccneg 10146 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 fzsplit2 10207 fzaddel 10216 fzrev 10241 elfzo 10306 nelfzo 10309 fzon 10324 elfzom1b 10395 ioo0 10439 ico0 10441 ioc0 10442 flqlt 10463 negqmod0 10513 frec2uzled 10611 expeq0 10752 nn0leexp2 10892 nn0opthlem1d 10902 leisorel 11019 cjreb 11292 ltmininf 11661 minclpr 11663 xrmaxlesup 11685 xrltmininf 11696 xrminltinf 11698 tanaddaplem 12164 nndivdvds 12222 moddvds 12225 modmulconst 12249 oddm1even 12301 ltoddhalfle 12319 bitsp1 12377 dvdssq 12467 phiprmpw 12659 eulerthlemh 12668 odzdvds 12683 pc2dvds 12768 1arith 12805 issubg3 13643 eqgid 13677 resghm2b 13713 conjghm 13727 conjnmzb 13731 ablsubsub23 13776 issrgid 13858 isringid 13902 opprsubgg 13961 opprunitd 13987 crngunit 13988 unitpropdg 14025 issubrng 14076 opprsubrngg 14088 lsslss 14258 lsspropdg 14308 rspsn 14411 znidom 14534 cnrest2 14823 cnptoprest 14826 cnptoprest2 14827 lmss 14833 lmff 14836 txlm 14866 ismet2 14941 blres 15021 xmetec 15024 bdbl 15090 metrest 15093 cnbl0 15121 cnblcld 15122 reopnap 15133 bl2ioo 15137 limcdifap 15249 efle 15363 reapef 15365 logleb 15462 logrpap0b 15463 cxplt 15503 cxple 15504 rpcxple2 15505 rpcxplt2 15506 cxplt3 15507 cxple3 15508 apcxp2 15526 logbleb 15548 logblt 15549 lgsdilem 15619 lgsne0 15630 lgsquadlem1 15669 lgsquadlem2 15670 m1lgs 15677 2lgslem1a 15680 2lgs 15696 iooref1o 16175 |
| Copyright terms: Public domain | W3C validator |