Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4d | Unicode version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | |
3bitr4d.2 | |
3bitr4d.3 |
Ref | Expression |
---|---|
3bitr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 | |
2 | 3bitr4d.1 | . . 3 | |
3 | 3bitr4d.3 | . . 3 | |
4 | 2, 3 | bitr4d 190 | . 2 |
5 | 1, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dfbi3dc 1379 xordidc 1381 19.32dc 1659 r19.32vdc 2606 opbrop 4664 fvopab3g 5540 respreima 5594 fmptco 5632 cocan1 5734 cocan2 5735 brtposg 6198 nnmword 6462 swoer 6505 erth 6521 brecop 6567 ecopovsymg 6576 xpdom2 6773 ctssdccl 7049 omniwomnimkv 7104 pitric 7235 ltexpi 7251 ltapig 7252 ltmpig 7253 ltanqg 7314 ltmnqg 7315 enq0breq 7350 genpassl 7438 genpassu 7439 1idprl 7504 1idpru 7505 caucvgprlemcanl 7558 ltasrg 7684 prsrlt 7701 caucvgsrlemoffcau 7712 ltpsrprg 7717 map2psrprg 7719 axpre-ltadd 7800 subsub23 8074 leadd1 8299 lemul1 8462 reapmul1lem 8463 reapmul1 8464 reapadd1 8465 apsym 8475 apadd1 8477 apti 8491 apcon4bid 8493 lediv1 8734 lt2mul2div 8744 lerec 8749 ltdiv2 8752 lediv2 8756 le2msq 8766 avgle1 9067 avgle2 9068 nn01to3 9519 qapne 9541 cnref1o 9552 xleneg 9734 xsubge0 9778 xleaddadd 9784 iooneg 9885 iccneg 9886 iccshftr 9891 iccshftl 9893 iccdil 9895 icccntr 9897 fzsplit2 9945 fzaddel 9954 fzrev 9979 elfzo 10041 fzon 10058 elfzom1b 10121 ioo0 10152 ico0 10154 ioc0 10155 flqlt 10175 negqmod0 10223 frec2uzled 10321 expeq0 10443 nn0opthlem1d 10587 leisorel 10701 cjreb 10759 ltmininf 11127 minclpr 11129 xrmaxlesup 11149 xrltmininf 11160 xrminltinf 11162 tanaddaplem 11628 nndivdvds 11685 moddvds 11688 modmulconst 11711 oddm1even 11758 ltoddhalfle 11776 dvdssq 11906 phiprmpw 12085 eulerthlemh 12094 cnrest2 12607 cnptoprest 12610 cnptoprest2 12611 lmss 12617 lmff 12620 txlm 12650 ismet2 12725 blres 12805 xmetec 12808 bdbl 12874 metrest 12877 cnbl0 12905 cnblcld 12906 reopnap 12909 bl2ioo 12913 limcdifap 13002 efle 13068 reapef 13070 logleb 13167 logrpap0b 13168 cxplt 13207 cxple 13208 rpcxple2 13209 rpcxplt2 13210 cxplt3 13211 cxple3 13212 apcxp2 13229 logbleb 13249 logblt 13250 iooref1o 13576 |
Copyright terms: Public domain | W3C validator |