ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xordc Unicode version

Theorem xordc 1387
Description: Two ways to express "exclusive or" between decidable propositions. Theorem *5.22 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
Assertion
Ref Expression
xordc  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( ph  <->  ps )  <->  ( ( ph  /\ 
-.  ps )  \/  ( ps  /\  -.  ph )
) ) ) )

Proof of Theorem xordc
StepHypRef Expression
1 xornbidc 1386 . . . 4  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  \/_  ps ) 
<->  -.  ( ph  <->  ps )
) ) )
21imp 123 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  \/_ 
ps )  <->  -.  ( ph 
<->  ps ) ) )
3 excxor 1373 . . . 4  |-  ( (
ph  \/_  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps )
) )
4 ancom 264 . . . . 5  |-  ( ( -.  ph  /\  ps )  <->  ( ps  /\  -.  ph ) )
54orbi2i 757 . . . 4  |-  ( ( ( ph  /\  -.  ps )  \/  ( -.  ph  /\  ps )
)  <->  ( ( ph  /\ 
-.  ps )  \/  ( ps  /\  -.  ph )
) )
63, 5bitri 183 . . 3  |-  ( (
ph  \/_  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( ps  /\  -.  ph )
) )
72, 6bitr3di 194 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( ph 
<->  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( ps  /\  -.  ph ) ) ) )
87ex 114 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( ph  <->  ps )  <->  ( ( ph  /\ 
-.  ps )  \/  ( ps  /\  -.  ph )
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    \/_ wxo 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-xor 1371
This theorem is referenced by:  dfbi3dc  1392  pm5.24dc  1393
  Copyright terms: Public domain W3C validator