| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | Unicode version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | pm3.22 265 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 821 rbaib 923 rbaibr 924 3anrot 986 3ancoma 988 excxor 1398 xorcom 1408 xordc 1412 xordc1 1413 dfbi3dc 1417 ancomsimp 1461 exancom 1632 19.29r 1645 19.42h 1711 19.42 1712 eu1 2080 moaneu 2132 moanmo 2133 2eu7 2150 eq2tri 2267 r19.28av 2644 r19.29r 2646 r19.42v 2665 rexcomf 2670 rabswap 2687 euxfr2dc 2965 rmo4 2973 reu8 2976 rmo3f 2977 rmo3 3098 incom 3373 difin2 3443 symdifxor 3447 elif 3591 inuni 4215 eqvinop 4305 uniuni 4516 dtruex 4625 elvvv 4756 brinxp2 4760 dmuni 4907 dfres2 5030 dfima2 5043 imadmrn 5051 imai 5057 cnvxp 5120 cnvcnvsn 5178 mptpreima 5195 rnco 5208 unixpm 5237 ressn 5242 xpcom 5248 fncnv 5359 fununi 5361 imadiflem 5372 fnres 5412 fnopabg 5419 dff1o2 5549 eqfnfv3 5702 respreima 5731 fsn 5775 fliftcnv 5887 isoini 5910 spc2ed 6342 brtpos2 6360 tpostpos 6373 tposmpo 6390 nnaord 6618 pmex 6763 elpmg 6774 mapval2 6788 mapsnen 6927 map1 6928 xpsnen 6941 xpcomco 6946 elfi2 7100 supmoti 7121 cnvti 7147 2omotaplemap 7404 elni2 7462 enq0enq 7579 prltlu 7635 prnmaxl 7636 prnminu 7637 nqprrnd 7691 ltpopr 7743 letri3 8188 lesub0 8587 creur 9067 xrletri3 9961 iooneg 10145 iccneg 10146 elfzuzb 10176 fzrev 10241 redivap 11300 imdivap 11307 rersqreu 11454 lenegsq 11521 climrecvg1n 11774 fisumcom2 11864 fsumcom 11865 fprodcom2fi 12052 fprodcom 12053 gcdcom 12409 bezoutlembi 12441 dfgcd2 12450 lcmcom 12501 isprm2 12554 unennn 12883 dfrhm2 14031 issubrng 14076 ntreq0 14719 restopn2 14770 ismet2 14941 blres 15021 metrest 15093 dedekindicclemicc 15219 sincosq3sgn 15415 lgsdi 15629 lgsquadlem3 15671 2lgslem1a 15680 |
| Copyright terms: Public domain | W3C validator |