| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | Unicode version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | pm3.22 265 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 824 rbaib 926 rbaibr 927 ifptru 995 ifpfal 996 3anrot 1007 3ancoma 1009 excxor 1420 xorcom 1430 xordc 1434 xordc1 1435 dfbi3dc 1439 ancomsimp 1483 exancom 1654 19.29r 1667 19.42h 1733 19.42 1734 eu1 2102 moaneu 2154 moanmo 2155 2eu7 2172 eq2tri 2289 r19.28av 2667 r19.29r 2669 r19.42v 2688 rexcomf 2693 rabswap 2710 euxfr2dc 2988 rmo4 2996 reu8 2999 rmo3f 3000 rmo3 3121 incom 3396 difin2 3466 symdifxor 3470 elif 3614 inuni 4239 eqvinop 4329 uniuni 4542 dtruex 4651 elvvv 4782 brinxp2 4786 dmuni 4933 dfres2 5057 dfima2 5070 imadmrn 5078 imai 5084 cnvxp 5147 cnvcnvsn 5205 mptpreima 5222 rnco 5235 unixpm 5264 ressn 5269 xpcom 5275 fncnv 5387 fununi 5389 imadiflem 5400 fnres 5440 fnopabg 5447 dff1o2 5577 eqfnfv3 5734 respreima 5763 fsn 5807 fliftcnv 5919 isoini 5942 spc2ed 6379 brtpos2 6397 tpostpos 6410 tposmpo 6427 nnaord 6655 pmex 6800 elpmg 6811 mapval2 6825 mapsnen 6964 map1 6965 xpsnen 6980 xpcomco 6985 elfi2 7139 supmoti 7160 cnvti 7186 2omotaplemap 7443 elni2 7501 enq0enq 7618 prltlu 7674 prnmaxl 7675 prnminu 7676 nqprrnd 7730 ltpopr 7782 letri3 8227 lesub0 8626 creur 9106 xrletri3 10000 iooneg 10184 iccneg 10185 elfzuzb 10215 fzrev 10280 redivap 11385 imdivap 11392 rersqreu 11539 lenegsq 11606 climrecvg1n 11859 fisumcom2 11949 fsumcom 11950 fprodcom2fi 12137 fprodcom 12138 gcdcom 12494 bezoutlembi 12526 dfgcd2 12535 lcmcom 12586 isprm2 12639 unennn 12968 dfrhm2 14118 issubrng 14163 ntreq0 14806 restopn2 14857 ismet2 15028 blres 15108 metrest 15180 dedekindicclemicc 15306 sincosq3sgn 15502 lgsdi 15716 lgsquadlem3 15758 2lgslem1a 15767 |
| Copyright terms: Public domain | W3C validator |