| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | Unicode version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | pm3.22 265 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 820 rbaib 922 rbaibr 923 3anrot 985 3ancoma 987 excxor 1389 xorcom 1399 xordc 1403 xordc1 1404 dfbi3dc 1408 ancomsimp 1451 exancom 1622 19.29r 1635 19.42h 1701 19.42 1702 eu1 2070 moaneu 2121 moanmo 2122 2eu7 2139 eq2tri 2256 r19.28av 2633 r19.29r 2635 r19.42v 2654 rexcomf 2659 rabswap 2676 euxfr2dc 2949 rmo4 2957 reu8 2960 rmo3f 2961 rmo3 3081 incom 3356 difin2 3426 symdifxor 3430 inuni 4189 eqvinop 4277 uniuni 4487 dtruex 4596 elvvv 4727 brinxp2 4731 dmuni 4877 dfres2 4999 dfima2 5012 imadmrn 5020 imai 5026 cnvxp 5089 cnvcnvsn 5147 mptpreima 5164 rnco 5177 unixpm 5206 ressn 5211 xpcom 5217 fncnv 5325 fununi 5327 imadiflem 5338 fnres 5377 fnopabg 5384 dff1o2 5512 eqfnfv3 5664 respreima 5693 fsn 5737 fliftcnv 5845 isoini 5868 spc2ed 6300 brtpos2 6318 tpostpos 6331 tposmpo 6348 nnaord 6576 pmex 6721 elpmg 6732 mapval2 6746 mapsnen 6879 map1 6880 xpsnen 6889 xpcomco 6894 elfi2 7047 supmoti 7068 cnvti 7094 2omotaplemap 7340 elni2 7398 enq0enq 7515 prltlu 7571 prnmaxl 7572 prnminu 7573 nqprrnd 7627 ltpopr 7679 letri3 8124 lesub0 8523 creur 9003 xrletri3 9896 iooneg 10080 iccneg 10081 elfzuzb 10111 fzrev 10176 redivap 11056 imdivap 11063 rersqreu 11210 lenegsq 11277 climrecvg1n 11530 fisumcom2 11620 fsumcom 11621 fprodcom2fi 11808 fprodcom 11809 gcdcom 12165 bezoutlembi 12197 dfgcd2 12206 lcmcom 12257 isprm2 12310 unennn 12639 dfrhm2 13786 issubrng 13831 ntreq0 14452 restopn2 14503 ismet2 14674 blres 14754 metrest 14826 dedekindicclemicc 14952 sincosq3sgn 15148 lgsdi 15362 lgsquadlem3 15404 2lgslem1a 15413 |
| Copyright terms: Public domain | W3C validator |