![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancom | Unicode version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm3.22 265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 820 rbaib 922 rbaibr 923 3anrot 985 3ancoma 987 excxor 1389 xorcom 1399 xordc 1403 xordc1 1404 dfbi3dc 1408 ancomsimp 1451 exancom 1619 19.29r 1632 19.42h 1698 19.42 1699 eu1 2067 moaneu 2118 moanmo 2119 2eu7 2136 eq2tri 2253 r19.28av 2630 r19.29r 2632 r19.42v 2651 rexcomf 2656 rabswap 2673 euxfr2dc 2945 rmo4 2953 reu8 2956 rmo3f 2957 rmo3 3077 incom 3351 difin2 3421 symdifxor 3425 inuni 4184 eqvinop 4272 uniuni 4482 dtruex 4591 elvvv 4722 brinxp2 4726 dmuni 4872 dfres2 4994 dfima2 5007 imadmrn 5015 imai 5021 cnvxp 5084 cnvcnvsn 5142 mptpreima 5159 rnco 5172 unixpm 5201 ressn 5206 xpcom 5212 fncnv 5320 fununi 5322 imadiflem 5333 fnres 5370 fnopabg 5377 dff1o2 5505 eqfnfv3 5657 respreima 5686 fsn 5730 fliftcnv 5838 isoini 5861 spc2ed 6286 brtpos2 6304 tpostpos 6317 tposmpo 6334 nnaord 6562 pmex 6707 elpmg 6718 mapval2 6732 mapsnen 6865 map1 6866 xpsnen 6875 xpcomco 6880 elfi2 7031 supmoti 7052 cnvti 7078 2omotaplemap 7317 elni2 7374 enq0enq 7491 prltlu 7547 prnmaxl 7548 prnminu 7549 nqprrnd 7603 ltpopr 7655 letri3 8100 lesub0 8498 creur 8978 xrletri3 9870 iooneg 10054 iccneg 10055 elfzuzb 10085 fzrev 10150 redivap 11018 imdivap 11025 rersqreu 11172 lenegsq 11239 climrecvg1n 11491 fisumcom2 11581 fsumcom 11582 fprodcom2fi 11769 fprodcom 11770 gcdcom 12110 bezoutlembi 12142 dfgcd2 12151 lcmcom 12202 isprm2 12255 unennn 12554 dfrhm2 13650 issubrng 13695 ntreq0 14300 restopn2 14351 ismet2 14522 blres 14602 metrest 14674 dedekindicclemicc 14786 sincosq3sgn 14963 lgsdi 15153 |
Copyright terms: Public domain | W3C validator |