![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancom | Unicode version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm3.22 265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 819 rbaib 921 rbaibr 922 3anrot 983 3ancoma 985 excxor 1378 xorcom 1388 xordc 1392 xordc1 1393 dfbi3dc 1397 ancomsimp 1440 exancom 1608 19.29r 1621 19.42h 1687 19.42 1688 eu1 2051 moaneu 2102 moanmo 2103 2eu7 2120 eq2tri 2237 r19.28av 2613 r19.29r 2615 r19.42v 2634 rexcomf 2639 rabswap 2655 euxfr2dc 2922 rmo4 2930 reu8 2933 rmo3f 2934 rmo3 3054 incom 3327 difin2 3397 symdifxor 3401 inuni 4155 eqvinop 4243 uniuni 4451 dtruex 4558 elvvv 4689 brinxp2 4693 dmuni 4837 dfres2 4959 dfima2 4972 imadmrn 4980 imai 4984 cnvxp 5047 cnvcnvsn 5105 mptpreima 5122 rnco 5135 unixpm 5164 ressn 5169 xpcom 5175 fncnv 5282 fununi 5284 imadiflem 5295 fnres 5332 fnopabg 5339 dff1o2 5466 eqfnfv3 5615 respreima 5644 fsn 5688 fliftcnv 5795 isoini 5818 spc2ed 6233 brtpos2 6251 tpostpos 6264 tposmpo 6281 nnaord 6509 pmex 6652 elpmg 6663 mapval2 6677 mapsnen 6810 map1 6811 xpsnen 6820 xpcomco 6825 elfi2 6970 supmoti 6991 cnvti 7017 2omotaplemap 7255 elni2 7312 enq0enq 7429 prltlu 7485 prnmaxl 7486 prnminu 7487 nqprrnd 7541 ltpopr 7593 letri3 8037 lesub0 8435 creur 8915 xrletri3 9803 iooneg 9987 iccneg 9988 elfzuzb 10018 fzrev 10083 redivap 10882 imdivap 10889 rersqreu 11036 lenegsq 11103 climrecvg1n 11355 fisumcom2 11445 fsumcom 11446 fprodcom2fi 11633 fprodcom 11634 gcdcom 11973 bezoutlembi 12005 dfgcd2 12014 lcmcom 12063 isprm2 12116 unennn 12397 ntreq0 13602 restopn2 13653 ismet2 13824 blres 13904 metrest 13976 dedekindicclemicc 14080 sincosq3sgn 14219 lgsdi 14408 |
Copyright terms: Public domain | W3C validator |