Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancom | Unicode version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 263 | . 2 | |
2 | pm3.22 263 | . 2 | |
3 | 1, 2 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ancomd 265 ancomsd 267 biancomi 268 biancomd 269 pm4.71r 388 pm5.32rd 448 pm5.32ri 452 anbi2ci 456 anbi12ci 458 bianassc 467 mpan10 471 an12 556 an32 557 an13 558 an42 582 andir 814 rbaib 916 rbaibr 917 3anrot 978 3ancoma 980 excxor 1373 xorcom 1383 xordc 1387 xordc1 1388 dfbi3dc 1392 ancomsimp 1433 exancom 1601 19.29r 1614 19.42h 1680 19.42 1681 eu1 2044 moaneu 2095 moanmo 2096 2eu7 2113 eq2tri 2230 r19.28av 2606 r19.29r 2608 r19.42v 2627 rexcomf 2632 rabswap 2648 euxfr2dc 2915 rmo4 2923 reu8 2926 rmo3f 2927 rmo3 3046 incom 3319 difin2 3389 symdifxor 3393 inuni 4141 eqvinop 4228 uniuni 4436 dtruex 4543 elvvv 4674 brinxp2 4678 dmuni 4821 dfres2 4943 dfima2 4955 imadmrn 4963 imai 4967 cnvxp 5029 cnvcnvsn 5087 mptpreima 5104 rnco 5117 unixpm 5146 ressn 5151 xpcom 5157 fncnv 5264 fununi 5266 imadiflem 5277 fnres 5314 fnopabg 5321 dff1o2 5447 eqfnfv3 5595 respreima 5624 fsn 5668 fliftcnv 5774 isoini 5797 spc2ed 6212 brtpos2 6230 tpostpos 6243 tposmpo 6260 nnaord 6488 pmex 6631 elpmg 6642 mapval2 6656 mapsnen 6789 map1 6790 xpsnen 6799 xpcomco 6804 elfi2 6949 supmoti 6970 cnvti 6996 elni2 7276 enq0enq 7393 prltlu 7449 prnmaxl 7450 prnminu 7451 nqprrnd 7505 ltpopr 7557 letri3 8000 lesub0 8398 creur 8875 xrletri3 9761 iooneg 9945 iccneg 9946 elfzuzb 9975 fzrev 10040 redivap 10838 imdivap 10845 rersqreu 10992 lenegsq 11059 climrecvg1n 11311 fisumcom2 11401 fsumcom 11402 fprodcom2fi 11589 fprodcom 11590 gcdcom 11928 bezoutlembi 11960 dfgcd2 11969 lcmcom 12018 isprm2 12071 unennn 12352 ntreq0 12926 restopn2 12977 ismet2 13148 blres 13228 metrest 13300 dedekindicclemicc 13404 sincosq3sgn 13543 lgsdi 13732 |
Copyright terms: Public domain | W3C validator |