![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancom | Unicode version |
Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
Ref | Expression |
---|---|
ancom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm3.22 265 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 819 rbaib 921 rbaibr 922 3anrot 983 3ancoma 985 excxor 1378 xorcom 1388 xordc 1392 xordc1 1393 dfbi3dc 1397 ancomsimp 1440 exancom 1608 19.29r 1621 19.42h 1687 19.42 1688 eu1 2051 moaneu 2102 moanmo 2103 2eu7 2120 eq2tri 2237 r19.28av 2613 r19.29r 2615 r19.42v 2634 rexcomf 2639 rabswap 2656 euxfr2dc 2923 rmo4 2931 reu8 2934 rmo3f 2935 rmo3 3055 incom 3328 difin2 3398 symdifxor 3402 inuni 4156 eqvinop 4244 uniuni 4452 dtruex 4559 elvvv 4690 brinxp2 4694 dmuni 4838 dfres2 4960 dfima2 4973 imadmrn 4981 imai 4985 cnvxp 5048 cnvcnvsn 5106 mptpreima 5123 rnco 5136 unixpm 5165 ressn 5170 xpcom 5176 fncnv 5283 fununi 5285 imadiflem 5296 fnres 5333 fnopabg 5340 dff1o2 5467 eqfnfv3 5616 respreima 5645 fsn 5689 fliftcnv 5796 isoini 5819 spc2ed 6234 brtpos2 6252 tpostpos 6265 tposmpo 6282 nnaord 6510 pmex 6653 elpmg 6664 mapval2 6678 mapsnen 6811 map1 6812 xpsnen 6821 xpcomco 6826 elfi2 6971 supmoti 6992 cnvti 7018 2omotaplemap 7256 elni2 7313 enq0enq 7430 prltlu 7486 prnmaxl 7487 prnminu 7488 nqprrnd 7542 ltpopr 7594 letri3 8038 lesub0 8436 creur 8916 xrletri3 9804 iooneg 9988 iccneg 9989 elfzuzb 10019 fzrev 10084 redivap 10883 imdivap 10890 rersqreu 11037 lenegsq 11104 climrecvg1n 11356 fisumcom2 11446 fsumcom 11447 fprodcom2fi 11634 fprodcom 11635 gcdcom 11974 bezoutlembi 12006 dfgcd2 12015 lcmcom 12064 isprm2 12117 unennn 12398 ntreq0 13635 restopn2 13686 ismet2 13857 blres 13937 metrest 14009 dedekindicclemicc 14113 sincosq3sgn 14252 lgsdi 14441 |
Copyright terms: Public domain | W3C validator |