| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | Unicode version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | pm3.22 265 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 821 rbaib 923 rbaibr 924 3anrot 986 3ancoma 988 excxor 1398 xorcom 1408 xordc 1412 xordc1 1413 dfbi3dc 1417 ancomsimp 1460 exancom 1631 19.29r 1644 19.42h 1710 19.42 1711 eu1 2079 moaneu 2130 moanmo 2131 2eu7 2148 eq2tri 2265 r19.28av 2642 r19.29r 2644 r19.42v 2663 rexcomf 2668 rabswap 2685 euxfr2dc 2958 rmo4 2966 reu8 2969 rmo3f 2970 rmo3 3090 incom 3365 difin2 3435 symdifxor 3439 inuni 4200 eqvinop 4288 uniuni 4499 dtruex 4608 elvvv 4739 brinxp2 4743 dmuni 4889 dfres2 5012 dfima2 5025 imadmrn 5033 imai 5039 cnvxp 5102 cnvcnvsn 5160 mptpreima 5177 rnco 5190 unixpm 5219 ressn 5224 xpcom 5230 fncnv 5341 fununi 5343 imadiflem 5354 fnres 5394 fnopabg 5401 dff1o2 5529 eqfnfv3 5681 respreima 5710 fsn 5754 fliftcnv 5866 isoini 5889 spc2ed 6321 brtpos2 6339 tpostpos 6352 tposmpo 6369 nnaord 6597 pmex 6742 elpmg 6753 mapval2 6767 mapsnen 6905 map1 6906 xpsnen 6918 xpcomco 6923 elfi2 7076 supmoti 7097 cnvti 7123 2omotaplemap 7371 elni2 7429 enq0enq 7546 prltlu 7602 prnmaxl 7603 prnminu 7604 nqprrnd 7658 ltpopr 7710 letri3 8155 lesub0 8554 creur 9034 xrletri3 9928 iooneg 10112 iccneg 10113 elfzuzb 10143 fzrev 10208 redivap 11218 imdivap 11225 rersqreu 11372 lenegsq 11439 climrecvg1n 11692 fisumcom2 11782 fsumcom 11783 fprodcom2fi 11970 fprodcom 11971 gcdcom 12327 bezoutlembi 12359 dfgcd2 12368 lcmcom 12419 isprm2 12472 unennn 12801 dfrhm2 13949 issubrng 13994 ntreq0 14637 restopn2 14688 ismet2 14859 blres 14939 metrest 15011 dedekindicclemicc 15137 sincosq3sgn 15333 lgsdi 15547 lgsquadlem3 15589 2lgslem1a 15598 |
| Copyright terms: Public domain | W3C validator |