| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | Unicode version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | pm3.22 265 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 821 rbaib 923 rbaibr 924 3anrot 986 3ancoma 988 excxor 1398 xorcom 1408 xordc 1412 xordc1 1413 dfbi3dc 1417 ancomsimp 1460 exancom 1631 19.29r 1644 19.42h 1710 19.42 1711 eu1 2079 moaneu 2130 moanmo 2131 2eu7 2148 eq2tri 2265 r19.28av 2642 r19.29r 2644 r19.42v 2663 rexcomf 2668 rabswap 2685 euxfr2dc 2958 rmo4 2966 reu8 2969 rmo3f 2970 rmo3 3090 incom 3365 difin2 3435 symdifxor 3439 inuni 4199 eqvinop 4287 uniuni 4498 dtruex 4607 elvvv 4738 brinxp2 4742 dmuni 4888 dfres2 5011 dfima2 5024 imadmrn 5032 imai 5038 cnvxp 5101 cnvcnvsn 5159 mptpreima 5176 rnco 5189 unixpm 5218 ressn 5223 xpcom 5229 fncnv 5340 fununi 5342 imadiflem 5353 fnres 5392 fnopabg 5399 dff1o2 5527 eqfnfv3 5679 respreima 5708 fsn 5752 fliftcnv 5864 isoini 5887 spc2ed 6319 brtpos2 6337 tpostpos 6350 tposmpo 6367 nnaord 6595 pmex 6740 elpmg 6751 mapval2 6765 mapsnen 6903 map1 6904 xpsnen 6916 xpcomco 6921 elfi2 7074 supmoti 7095 cnvti 7121 2omotaplemap 7369 elni2 7427 enq0enq 7544 prltlu 7600 prnmaxl 7601 prnminu 7602 nqprrnd 7656 ltpopr 7708 letri3 8153 lesub0 8552 creur 9032 xrletri3 9926 iooneg 10110 iccneg 10111 elfzuzb 10141 fzrev 10206 redivap 11185 imdivap 11192 rersqreu 11339 lenegsq 11406 climrecvg1n 11659 fisumcom2 11749 fsumcom 11750 fprodcom2fi 11937 fprodcom 11938 gcdcom 12294 bezoutlembi 12326 dfgcd2 12335 lcmcom 12386 isprm2 12439 unennn 12768 dfrhm2 13916 issubrng 13961 ntreq0 14604 restopn2 14655 ismet2 14826 blres 14906 metrest 14978 dedekindicclemicc 15104 sincosq3sgn 15300 lgsdi 15514 lgsquadlem3 15556 2lgslem1a 15565 |
| Copyright terms: Public domain | W3C validator |