| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom | Unicode version | ||
| Description: Commutative law for conjunction. Theorem *4.3 of [WhiteheadRussell] p. 118. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Wolf Lammen, 4-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | pm3.22 265 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ancomd 267 ancomsd 269 biancomi 270 biancomd 271 pm4.71r 390 pm5.32rd 451 pm5.32ri 455 anbi2ci 459 anbi12ci 461 bianassc 470 mpan10 474 an12 561 an32 562 an13 563 an42 587 andir 820 rbaib 922 rbaibr 923 3anrot 985 3ancoma 987 excxor 1389 xorcom 1399 xordc 1403 xordc1 1404 dfbi3dc 1408 ancomsimp 1451 exancom 1622 19.29r 1635 19.42h 1701 19.42 1702 eu1 2070 moaneu 2121 moanmo 2122 2eu7 2139 eq2tri 2256 r19.28av 2633 r19.29r 2635 r19.42v 2654 rexcomf 2659 rabswap 2676 euxfr2dc 2949 rmo4 2957 reu8 2960 rmo3f 2961 rmo3 3081 incom 3356 difin2 3426 symdifxor 3430 inuni 4189 eqvinop 4277 uniuni 4487 dtruex 4596 elvvv 4727 brinxp2 4731 dmuni 4877 dfres2 4999 dfima2 5012 imadmrn 5020 imai 5026 cnvxp 5089 cnvcnvsn 5147 mptpreima 5164 rnco 5177 unixpm 5206 ressn 5211 xpcom 5217 fncnv 5325 fununi 5327 imadiflem 5338 fnres 5375 fnopabg 5382 dff1o2 5510 eqfnfv3 5662 respreima 5691 fsn 5735 fliftcnv 5843 isoini 5866 spc2ed 6292 brtpos2 6310 tpostpos 6323 tposmpo 6340 nnaord 6568 pmex 6713 elpmg 6724 mapval2 6738 mapsnen 6871 map1 6872 xpsnen 6881 xpcomco 6886 elfi2 7039 supmoti 7060 cnvti 7086 2omotaplemap 7326 elni2 7383 enq0enq 7500 prltlu 7556 prnmaxl 7557 prnminu 7558 nqprrnd 7612 ltpopr 7664 letri3 8109 lesub0 8508 creur 8988 xrletri3 9881 iooneg 10065 iccneg 10066 elfzuzb 10096 fzrev 10161 redivap 11041 imdivap 11048 rersqreu 11195 lenegsq 11262 climrecvg1n 11515 fisumcom2 11605 fsumcom 11606 fprodcom2fi 11793 fprodcom 11794 gcdcom 12150 bezoutlembi 12182 dfgcd2 12191 lcmcom 12242 isprm2 12295 unennn 12624 dfrhm2 13720 issubrng 13765 ntreq0 14378 restopn2 14429 ismet2 14600 blres 14680 metrest 14752 dedekindicclemicc 14878 sincosq3sgn 15074 lgsdi 15288 lgsquadlem3 15330 2lgslem1a 15339 |
| Copyright terms: Public domain | W3C validator |