ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfifp3dc Unicode version

Theorem dfifp3dc 988
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
dfifp3dc  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  ->  ps )  /\  ( ph  \/  ch )
) ) )

Proof of Theorem dfifp3dc
StepHypRef Expression
1 dfifp2dc 987 . 2  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) ) )
2 pm4.64dc 905 . . 3  |-  (DECID  ph  ->  ( ( -.  ph  ->  ch )  <->  ( ph  \/  ch ) ) )
32anbi2d 464 . 2  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  /\  ( -. 
ph  ->  ch ) )  <-> 
( ( ph  ->  ps )  /\  ( ph  \/  ch ) ) ) )
41, 3bitrd 188 1  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  ->  ps )  /\  ( ph  \/  ch )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by:  dfifp4dc  989  ifpnst  994
  Copyright terms: Public domain W3C validator