| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfifp2dc | Unicode version | ||
| Description: Alternate definition of
the conditional operator for decidable
propositions. The value of if- |
| Ref | Expression |
|---|---|
| dfifp2dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifp2 986 |
. 2
| |
| 2 | exmiddc 841 |
. . . . 5
| |
| 3 | simpl 109 |
. . . . . . . 8
| |
| 4 | simprl 529 |
. . . . . . . 8
| |
| 5 | 3, 4 | jcai 311 |
. . . . . . 7
|
| 6 | 5 | orcd 738 |
. . . . . 6
|
| 7 | simpl 109 |
. . . . . . . 8
| |
| 8 | simprr 531 |
. . . . . . . 8
| |
| 9 | 7, 8 | jcai 311 |
. . . . . . 7
|
| 10 | 9 | olcd 739 |
. . . . . 6
|
| 11 | 6, 10 | jaoian 800 |
. . . . 5
|
| 12 | 2, 11 | sylan 283 |
. . . 4
|
| 13 | df-ifp 984 |
. . . 4
| |
| 14 | 12, 13 | sylibr 134 |
. . 3
|
| 15 | 14 | ex 115 |
. 2
|
| 16 | 1, 15 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 |
| This theorem is referenced by: dfifp3dc 988 dfifp5dc 990 ifpdfbidc 991 |
| Copyright terms: Public domain | W3C validator |