ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfifp2dc Unicode version

Theorem dfifp2dc 987
Description: Alternate definition of the conditional operator for decidable propositions. The value of if-
( ph ,  ps ,  ch ) is "if  ph then  ps, and if not  ph then  ch". This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 984). (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
dfifp2dc  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) ) )

Proof of Theorem dfifp2dc
StepHypRef Expression
1 ifp2 986 . 2  |-  (if- (
ph ,  ps ,  ch )  ->  ( (
ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )
2 exmiddc 841 . . . . 5  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
3 simpl 109 . . . . . . . 8  |-  ( (
ph  /\  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  ->  ph )
4 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  -> 
( ph  ->  ps )
)
53, 4jcai 311 . . . . . . 7  |-  ( (
ph  /\  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  -> 
( ph  /\  ps )
)
65orcd 738 . . . . . 6  |-  ( (
ph  /\  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  -> 
( ( ph  /\  ps )  \/  ( -.  ph  /\  ch )
) )
7 simpl 109 . . . . . . . 8  |-  ( ( -.  ph  /\  (
( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  ->  -.  ph )
8 simprr 531 . . . . . . . 8  |-  ( ( -.  ph  /\  (
( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  -> 
( -.  ph  ->  ch ) )
97, 8jcai 311 . . . . . . 7  |-  ( ( -.  ph  /\  (
( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  -> 
( -.  ph  /\  ch ) )
109olcd 739 . . . . . 6  |-  ( ( -.  ph  /\  (
( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  -> 
( ( ph  /\  ps )  \/  ( -.  ph  /\  ch )
) )
116, 10jaoian 800 . . . . 5  |-  ( ( ( ph  \/  -.  ph )  /\  ( (
ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )  -> 
( ( ph  /\  ps )  \/  ( -.  ph  /\  ch )
) )
122, 11sylan 283 . . . 4  |-  ( (DECID  ph  /\  ( ( ph  ->  ps )  /\  ( -. 
ph  ->  ch ) ) )  ->  ( ( ph  /\  ps )  \/  ( -.  ph  /\  ch ) ) )
13 df-ifp 984 . . . 4  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ch )
) )
1412, 13sylibr 134 . . 3  |-  ( (DECID  ph  /\  ( ( ph  ->  ps )  /\  ( -. 
ph  ->  ch ) ) )  -> if- ( ph ,  ps ,  ch )
)
1514ex 115 . 2  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  /\  ( -. 
ph  ->  ch ) )  -> if- ( ph ,  ps ,  ch )
) )
161, 15impbid2 143 1  |-  (DECID  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by:  dfifp3dc  988  dfifp5dc  990  ifpdfbidc  991
  Copyright terms: Public domain W3C validator