ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.64dc Unicode version

Theorem pm4.64dc 895
Description: Theorem *4.64 of [WhiteheadRussell] p. 120, given a decidability condition. The reverse direction, pm2.53 717, holds for all propositions. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.64dc  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  <->  ( ph  \/  ps ) ) )

Proof of Theorem pm4.64dc
StepHypRef Expression
1 dfordc 887 . 2  |-  (DECID  ph  ->  ( ( ph  \/  ps ) 
<->  ( -.  ph  ->  ps ) ) )
21bicomd 140 1  |-  (DECID  ph  ->  ( ( -.  ph  ->  ps )  <->  ( ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by:  pm4.66dc  896
  Copyright terms: Public domain W3C validator