ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftru2 Unicode version

Theorem dftru2 1351
Description: An alternate definition of "true". (Contributed by Anthony Hart, 13-Oct-2010.) (Revised by BJ, 12-Jul-2019.) (New usage is discouraged.)
Assertion
Ref Expression
dftru2  |-  ( T.  <-> 
( ph  ->  ph )
)

Proof of Theorem dftru2
StepHypRef Expression
1 tru 1347 . 2  |- T.
2 id 19 . 2  |-  ( ph  ->  ph )
31, 22th 173 1  |-  ( T.  <-> 
( ph  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   T. wtru 1344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator