![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tru | Unicode version |
Description: The truth value ![]() |
Ref | Expression |
---|---|
tru |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-tru 1356 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbir 146 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-tru 1356 |
This theorem is referenced by: fal 1360 dftru2 1361 mptru 1362 tbtru 1363 bitru 1365 trud 1369 truan 1370 truorfal 1406 falortru 1407 truimfal 1410 nftru 1466 euotd 4256 rabxfr 4472 reuhyp 4474 elabrex 5761 elabrexg 5762 caovcl 6032 caovass 6038 caovdi 6057 ectocl 6605 reef11 11710 bj-sbimeh 14664 bdtru 14724 bj-nn0suc0 14842 |
Copyright terms: Public domain | W3C validator |