![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tru | Unicode version |
Description: The truth value ![]() |
Ref | Expression |
---|---|
tru |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-tru 1367 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbir 146 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-tru 1367 |
This theorem is referenced by: fal 1371 dftru2 1372 mptru 1373 tbtru 1374 bitru 1376 trud 1380 truan 1381 truorfal 1417 falortru 1418 truimfal 1421 nftru 1477 euotd 4284 rabxfr 4502 reuhyp 4504 elabrex 5801 elabrexg 5802 caovcl 6075 caovass 6081 caovdi 6100 ectocl 6658 reef11 11845 mpomulcn 14745 bj-sbimeh 15334 bdtru 15394 bj-nn0suc0 15512 |
Copyright terms: Public domain | W3C validator |