![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptru | Unicode version |
Description: Eliminate ![]() ![]() |
Ref | Expression |
---|---|
mptru.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mptru |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1368 |
. 2
![]() ![]() | |
2 | mptru.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-tru 1367 |
This theorem is referenced by: xorbi12i 1394 nfbi 1600 spime 1752 eubii 2051 nfmo 2062 mobii 2079 dvelimc 2358 ralbii 2500 rexbii 2501 nfralw 2531 nfralxy 2532 nfrexw 2533 nfralya 2534 nfrexya 2535 nfreuxy 2669 nfsbc1 3003 nfsbc 3006 sbcbii 3045 csbeq2i 3107 nfcsb1 3112 nfsbcw 3115 nfcsbw 3117 nfcsb 3118 nfif 3585 ssbri 4073 nfbr 4075 mpteq12i 4117 ralxfr 4497 rexxfr 4499 nfiotaw 5219 nfriota 5883 nfov 5948 mpoeq123i 5981 mpoeq3ia 5983 disjsnxp 6290 tfri1 6418 eqer 6619 0er 6621 ecopover 6687 ecopoverg 6690 nfixpxy 6771 en2i 6824 en3i 6825 ener 6833 ensymb 6834 entr 6838 djuf1olem 7112 omp1eomlem 7153 infnninf 7183 ltsopi 7380 ltsonq 7458 enq0er 7495 ltpopr 7655 ltposr 7823 axcnex 7919 axaddf 7928 axmulf 7929 ltso 8097 nfneg 8216 negiso 8974 sup3exmid 8976 xrltso 9862 frecfzennn 10497 frechashgf1o 10499 0tonninf 10511 1tonninf 10512 nninfinf 10514 facnn 10798 fac0 10799 fac1 10800 cnrecnv 11054 cau3 11259 xrnegiso 11405 sum0 11531 trireciplem 11643 trirecip 11644 ege2le3 11814 oddpwdc 12312 ennnfonelem1 12564 ennnfonelemhf1o 12570 strnfvn 12639 strslss 12666 mndprop 13022 grpprop 13090 isgrpi 13096 ablprop 13367 ringprop 13536 rlmfn 13949 cnfldstr 14049 cncrng 14057 cnfldui 14077 zringbas 14084 zringplusg 14085 dvdsrzring 14091 expghmap 14095 fnpsr 14153 txswaphmeolem 14488 divcnap 14723 elcncf1ii 14735 cnrehmeocntop 14764 hovercncf 14800 dvid 14847 dveflem 14872 dvef 14873 sincn 14904 coscn 14905 cosz12 14915 sincos6thpi 14977 lgsdir2lem5 15148 bj-sttru 15232 bj-dctru 15245 bj-sbimeh 15264 bdnthALT 15327 012of 15486 2o01f 15487 isomninnlem 15520 iooref1o 15524 iswomninnlem 15539 ismkvnnlem 15542 dceqnconst 15550 dcapnconst 15551 taupi 15563 |
Copyright terms: Public domain | W3C validator |