| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | Unicode version | ||
| Description: Eliminate |
| Ref | Expression |
|---|---|
| mptru.1 |
|
| Ref | Expression |
|---|---|
| mptru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 |
. 2
| |
| 2 | mptru.1 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 |
| This theorem is referenced by: xorbi12i 1403 dcfromcon 1468 nfbi 1612 spime 1764 eubii 2063 nfmo 2074 mobii 2091 dvelimc 2370 ralbii 2512 rexbii 2513 nfralw 2543 nfralxy 2544 nfrexw 2545 nfralya 2546 nfrexya 2547 nfreuxy 2681 nfsbc1 3016 nfsbc 3019 sbcbii 3058 csbeq2i 3120 nfcsb1 3125 nfsbcw 3128 nfcsbw 3130 nfcsb 3131 nfif 3599 ssbri 4088 nfbr 4090 mpteq12i 4132 ralxfr 4513 rexxfr 4515 nfiotaw 5236 nfriota 5909 nfov 5974 mpoeq123i 6008 mpoeq3ia 6010 disjsnxp 6323 tfri1 6451 eqer 6652 0er 6654 ecopover 6720 ecopoverg 6723 nfixpxy 6804 en2i 6861 en3i 6862 ener 6871 ensymb 6872 entr 6876 djuf1olem 7155 omp1eomlem 7196 infnninf 7226 ltsopi 7433 ltsonq 7511 enq0er 7548 ltpopr 7708 ltposr 7876 axcnex 7972 axaddf 7981 axmulf 7982 ltso 8150 nfneg 8269 negiso 9028 sup3exmid 9030 xrltso 9918 frecfzennn 10571 frechashgf1o 10573 0tonninf 10585 1tonninf 10586 nninfinf 10588 facnn 10872 fac0 10873 fac1 10874 cnrecnv 11221 cau3 11426 xrnegiso 11573 sum0 11699 trireciplem 11811 trirecip 11812 ege2le3 11982 oddpwdc 12496 modxai 12739 modsubi 12742 ennnfonelem1 12778 ennnfonelemhf1o 12784 strnfvn 12853 strslss 12880 prdsvallem 13104 prdsval 13105 mndprop 13273 grpprop 13350 isgrpi 13356 ablprop 13633 ringprop 13802 rlmfn 14215 cnfldstr 14320 cncrng 14331 cnfldui 14351 zringbas 14358 zringplusg 14359 dvdsrzring 14365 expghmap 14369 fnpsr 14429 txswaphmeolem 14792 divcnap 15037 expcn 15041 elcncf1ii 15052 cnrehmeocntop 15082 hovercncf 15118 dvid 15167 dvidre 15169 dveflem 15198 dvef 15199 sincn 15241 coscn 15242 cosz12 15252 sincos6thpi 15314 lgsdir2lem5 15509 bj-sttru 15676 bj-dctru 15689 bj-sbimeh 15708 bdnthALT 15771 012of 15930 2o01f 15931 isomninnlem 15969 iooref1o 15973 iswomninnlem 15988 ismkvnnlem 15991 dceqnconst 15999 dcapnconst 16000 taupi 16012 |
| Copyright terms: Public domain | W3C validator |