| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | Unicode version | ||
| Description: Eliminate |
| Ref | Expression |
|---|---|
| mptru.1 |
|
| Ref | Expression |
|---|---|
| mptru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 |
. 2
| |
| 2 | mptru.1 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 |
| This theorem is referenced by: xorbi12i 1403 dcfromcon 1468 nfbi 1612 spime 1764 eubii 2063 nfmo 2074 mobii 2091 dvelimc 2370 ralbii 2512 rexbii 2513 nfralw 2543 nfralxy 2544 nfrexw 2545 nfralya 2546 nfrexya 2547 nfreuxy 2681 nfsbc1 3016 nfsbc 3019 sbcbii 3058 csbeq2i 3120 nfcsb1 3125 nfsbcw 3128 nfcsbw 3130 nfcsb 3131 nfif 3599 ssbri 4089 nfbr 4091 mpteq12i 4133 ralxfr 4514 rexxfr 4516 nfiotaw 5237 nfriota 5911 nfov 5976 mpoeq123i 6010 mpoeq3ia 6012 disjsnxp 6325 tfri1 6453 eqer 6654 0er 6656 ecopover 6722 ecopoverg 6725 nfixpxy 6806 en2i 6863 en3i 6864 ener 6873 ensymb 6874 entr 6878 djuf1olem 7157 omp1eomlem 7198 infnninf 7228 ltsopi 7435 ltsonq 7513 enq0er 7550 ltpopr 7710 ltposr 7878 axcnex 7974 axaddf 7983 axmulf 7984 ltso 8152 nfneg 8271 negiso 9030 sup3exmid 9032 xrltso 9920 frecfzennn 10573 frechashgf1o 10575 0tonninf 10587 1tonninf 10588 nninfinf 10590 facnn 10874 fac0 10875 fac1 10876 cnrecnv 11254 cau3 11459 xrnegiso 11606 sum0 11732 trireciplem 11844 trirecip 11845 ege2le3 12015 oddpwdc 12529 modxai 12772 modsubi 12775 ennnfonelem1 12811 ennnfonelemhf1o 12817 strnfvn 12886 strslss 12913 prdsvallem 13137 prdsval 13138 mndprop 13306 grpprop 13383 isgrpi 13389 ablprop 13666 ringprop 13835 rlmfn 14248 cnfldstr 14353 cncrng 14364 cnfldui 14384 zringbas 14391 zringplusg 14392 dvdsrzring 14398 expghmap 14402 fnpsr 14462 txswaphmeolem 14825 divcnap 15070 expcn 15074 elcncf1ii 15085 cnrehmeocntop 15115 hovercncf 15151 dvid 15200 dvidre 15202 dveflem 15231 dvef 15232 sincn 15274 coscn 15275 cosz12 15285 sincos6thpi 15347 lgsdir2lem5 15542 bj-sttru 15713 bj-dctru 15726 bj-sbimeh 15745 bdnthALT 15808 012of 15967 2o01f 15968 isomninnlem 16006 iooref1o 16010 iswomninnlem 16025 ismkvnnlem 16028 dceqnconst 16036 dcapnconst 16037 taupi 16049 |
| Copyright terms: Public domain | W3C validator |