| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | Unicode version | ||
| Description: Eliminate |
| Ref | Expression |
|---|---|
| mptru.1 |
|
| Ref | Expression |
|---|---|
| mptru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1399 |
. 2
| |
| 2 | mptru.1 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 |
| This theorem is referenced by: xorbi12i 1425 dcfromcon 1491 nfbi 1635 spime 1787 eubii 2086 nfmo 2097 mobii 2114 dvelimc 2394 ralbii 2536 rexbii 2537 nfralw 2567 nfralxy 2568 nfrexw 2569 nfralya 2570 nfrexya 2571 nfreuw 2706 nfsbc1 3046 nfsbc 3049 sbcbii 3088 csbeq2i 3151 nfcsb1 3156 nfsbcw 3159 nfcsbw 3161 nfcsb 3162 nfif 3631 ssbri 4128 nfbr 4130 mpteq12i 4172 ralxfr 4557 rexxfr 4559 nfiotaw 5282 nfriota 5964 nfov 6031 mpoeq123i 6067 mpoeq3ia 6069 disjsnxp 6383 tfri1 6511 eqer 6712 0er 6714 ecopover 6780 ecopoverg 6783 nfixpxy 6864 en2i 6921 en3i 6922 ener 6931 ensymb 6932 entr 6936 djuf1olem 7220 omp1eomlem 7261 infnninf 7291 ltsopi 7507 ltsonq 7585 enq0er 7622 ltpopr 7782 ltposr 7950 axcnex 8046 axaddf 8055 axmulf 8056 ltso 8224 nfneg 8343 negiso 9102 sup3exmid 9104 xrltso 9992 frecfzennn 10648 frechashgf1o 10650 0tonninf 10662 1tonninf 10663 nninfinf 10665 facnn 10949 fac0 10950 fac1 10951 cnrecnv 11421 cau3 11626 xrnegiso 11773 sum0 11899 trireciplem 12011 trirecip 12012 ege2le3 12182 oddpwdc 12696 modxai 12939 modsubi 12942 ennnfonelem1 12978 ennnfonelemhf1o 12984 strnfvn 13053 strslss 13080 prdsvallem 13305 prdsval 13306 mndprop 13474 grpprop 13551 isgrpi 13557 ablprop 13834 ringprop 14003 rlmfn 14417 cnfldstr 14522 cncrng 14533 cnfldui 14553 zringbas 14560 zringplusg 14561 dvdsrzring 14567 expghmap 14571 fnpsr 14631 txswaphmeolem 14994 divcnap 15239 expcn 15243 elcncf1ii 15254 cnrehmeocntop 15284 hovercncf 15320 dvid 15369 dvidre 15371 dveflem 15400 dvef 15401 sincn 15443 coscn 15444 cosz12 15454 sincos6thpi 15516 lgsdir2lem5 15711 bj-sttru 16104 bj-dctru 16117 bj-sbimeh 16136 bdnthALT 16198 012of 16357 2o01f 16358 isomninnlem 16398 iooref1o 16402 iswomninnlem 16417 ismkvnnlem 16420 dceqnconst 16428 dcapnconst 16429 taupi 16441 |
| Copyright terms: Public domain | W3C validator |