![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptru | Unicode version |
Description: Eliminate ![]() ![]() |
Ref | Expression |
---|---|
mptru.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mptru |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1293 |
. 2
![]() ![]() | |
2 | mptru.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-tru 1292 |
This theorem is referenced by: xorbi12i 1319 nfbi 1526 spime 1676 eubii 1957 nfmo 1968 mobii 1985 dvelimc 2249 ralbii 2384 rexbii 2385 nfralxy 2414 nfrexxy 2415 nfralya 2416 nfrexya 2417 nfreuxy 2541 nfsbc1 2857 nfsbc 2860 sbcbii 2898 csbeq2i 2957 nfcsb1 2962 nfcsb 2965 nfif 3419 ssbri 3887 nfbr 3889 mpteq12i 3926 ralxfr 4288 rexxfr 4290 nfiotaxy 4984 nfriota 5617 nfov 5679 mpt2eq123i 5712 mpt2eq3ia 5714 disjsnxp 6002 tfri1 6130 eqer 6324 0er 6326 ecopover 6390 ecopoverg 6393 en2i 6487 en3i 6488 ener 6496 ensymb 6497 entr 6501 djuf1olem 6745 ltsopi 6879 ltsonq 6957 enq0er 6994 ltpopr 7154 ltposr 7309 axcnex 7396 ltso 7563 nfneg 7679 negiso 8416 xrltso 9266 frecfzennn 9833 frechashgf1o 9835 0tonninf 9845 1tonninf 9846 facnn 10135 fac0 10136 fac1 10137 cnrecnv 10344 cau3 10548 sum0 10780 trireciplem 10894 trirecip 10895 ege2le3 10961 oddpwdc 11430 strnfvn 11517 strslss 11541 elcncf1ii 11636 bj-sbimeh 11673 bdnthALT 11726 |
Copyright terms: Public domain | W3C validator |