| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptru | Unicode version | ||
| Description: Eliminate |
| Ref | Expression |
|---|---|
| mptru.1 |
|
| Ref | Expression |
|---|---|
| mptru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 |
. 2
| |
| 2 | mptru.1 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 |
| This theorem is referenced by: xorbi12i 1403 dcfromcon 1469 nfbi 1613 spime 1765 eubii 2064 nfmo 2075 mobii 2092 dvelimc 2372 ralbii 2514 rexbii 2515 nfralw 2545 nfralxy 2546 nfrexw 2547 nfralya 2548 nfrexya 2549 nfreuw 2683 nfsbc1 3023 nfsbc 3026 sbcbii 3065 csbeq2i 3128 nfcsb1 3133 nfsbcw 3136 nfcsbw 3138 nfcsb 3139 nfif 3608 ssbri 4104 nfbr 4106 mpteq12i 4148 ralxfr 4531 rexxfr 4533 nfiotaw 5255 nfriota 5932 nfov 5997 mpoeq123i 6031 mpoeq3ia 6033 disjsnxp 6346 tfri1 6474 eqer 6675 0er 6677 ecopover 6743 ecopoverg 6746 nfixpxy 6827 en2i 6884 en3i 6885 ener 6894 ensymb 6895 entr 6899 djuf1olem 7181 omp1eomlem 7222 infnninf 7252 ltsopi 7468 ltsonq 7546 enq0er 7583 ltpopr 7743 ltposr 7911 axcnex 8007 axaddf 8016 axmulf 8017 ltso 8185 nfneg 8304 negiso 9063 sup3exmid 9065 xrltso 9953 frecfzennn 10608 frechashgf1o 10610 0tonninf 10622 1tonninf 10623 nninfinf 10625 facnn 10909 fac0 10910 fac1 10911 cnrecnv 11336 cau3 11541 xrnegiso 11688 sum0 11814 trireciplem 11926 trirecip 11927 ege2le3 12097 oddpwdc 12611 modxai 12854 modsubi 12857 ennnfonelem1 12893 ennnfonelemhf1o 12899 strnfvn 12968 strslss 12995 prdsvallem 13219 prdsval 13220 mndprop 13388 grpprop 13465 isgrpi 13471 ablprop 13748 ringprop 13917 rlmfn 14330 cnfldstr 14435 cncrng 14446 cnfldui 14466 zringbas 14473 zringplusg 14474 dvdsrzring 14480 expghmap 14484 fnpsr 14544 txswaphmeolem 14907 divcnap 15152 expcn 15156 elcncf1ii 15167 cnrehmeocntop 15197 hovercncf 15233 dvid 15282 dvidre 15284 dveflem 15313 dvef 15314 sincn 15356 coscn 15357 cosz12 15367 sincos6thpi 15429 lgsdir2lem5 15624 bj-sttru 15876 bj-dctru 15889 bj-sbimeh 15908 bdnthALT 15970 012of 16130 2o01f 16131 isomninnlem 16171 iooref1o 16175 iswomninnlem 16190 ismkvnnlem 16193 dceqnconst 16201 dcapnconst 16202 taupi 16214 |
| Copyright terms: Public domain | W3C validator |