![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptru | Unicode version |
Description: Eliminate ![]() ![]() |
Ref | Expression |
---|---|
mptru.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mptru |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1357 |
. 2
![]() ![]() | |
2 | mptru.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-tru 1356 |
This theorem is referenced by: xorbi12i 1383 nfbi 1589 spime 1741 eubii 2035 nfmo 2046 mobii 2063 dvelimc 2341 ralbii 2483 rexbii 2484 nfralw 2514 nfralxy 2515 nfrexxy 2516 nfralya 2517 nfrexya 2518 nfreuxy 2652 nfsbc1 2981 nfsbc 2984 sbcbii 3023 csbeq2i 3085 nfcsb1 3090 nfcsbw 3094 nfcsb 3095 nfif 3563 ssbri 4048 nfbr 4050 mpteq12i 4092 ralxfr 4467 rexxfr 4469 nfiotaw 5183 nfriota 5840 nfov 5905 mpoeq123i 5938 mpoeq3ia 5940 disjsnxp 6238 tfri1 6366 eqer 6567 0er 6569 ecopover 6633 ecopoverg 6636 nfixpxy 6717 en2i 6770 en3i 6771 ener 6779 ensymb 6780 entr 6784 djuf1olem 7052 omp1eomlem 7093 infnninf 7122 ltsopi 7319 ltsonq 7397 enq0er 7434 ltpopr 7594 ltposr 7762 axcnex 7858 axaddf 7867 axmulf 7868 ltso 8035 nfneg 8154 negiso 8912 sup3exmid 8914 xrltso 9796 frecfzennn 10426 frechashgf1o 10428 0tonninf 10439 1tonninf 10440 facnn 10707 fac0 10708 fac1 10709 cnrecnv 10919 cau3 11124 xrnegiso 11270 sum0 11396 trireciplem 11508 trirecip 11509 ege2le3 11679 oddpwdc 12174 ennnfonelem1 12408 ennnfonelemhf1o 12414 strnfvn 12483 strslss 12510 mndprop 12842 grpprop 12894 isgrpi 12900 ablprop 13100 ringprop 13219 cnfldstr 13460 cncrng 13466 zringbas 13489 zringplusg 13490 dvdsrzring 13496 txswaphmeolem 13823 divcnap 14058 elcncf1ii 14070 cnrehmeocntop 14096 dvid 14165 dveflem 14190 dvef 14191 sincn 14193 coscn 14194 cosz12 14204 sincos6thpi 14266 lgsdir2lem5 14436 bj-sttru 14495 bj-dctru 14508 bj-sbimeh 14527 bdnthALT 14590 012of 14748 2o01f 14749 isomninnlem 14781 iooref1o 14785 iswomninnlem 14800 ismkvnnlem 14803 dceqnconst 14810 dcapnconst 14811 taupi 14823 |
Copyright terms: Public domain | W3C validator |