ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecase2d Unicode version

Theorem ecase2d 1385
Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Sep-2024.)
Hypotheses
Ref Expression
ecase2d.1  |-  ( ph  ->  ps )
ecase2d.2  |-  ( ph  ->  -.  ( ps  /\  ch ) )
ecase2d.3  |-  ( ph  ->  -.  ( ps  /\  th ) )
ecase2d.4  |-  ( ph  ->  ( ta  \/  ( ch  \/  th ) ) )
Assertion
Ref Expression
ecase2d  |-  ( ph  ->  ta )

Proof of Theorem ecase2d
StepHypRef Expression
1 ecase2d.1 . . . 4  |-  ( ph  ->  ps )
2 ecase2d.2 . . . 4  |-  ( ph  ->  -.  ( ps  /\  ch ) )
31, 2mpnanrd 697 . . 3  |-  ( ph  ->  -.  ch )
4 ecase2d.3 . . . 4  |-  ( ph  ->  -.  ( ps  /\  th ) )
51, 4mpnanrd 697 . . 3  |-  ( ph  ->  -.  th )
6 ioran 757 . . 3  |-  ( -.  ( ch  \/  th ) 
<->  ( -.  ch  /\  -.  th ) )
73, 5, 6sylanbrc 417 . 2  |-  ( ph  ->  -.  ( ch  \/  th ) )
8 ecase2d.4 . 2  |-  ( ph  ->  ( ta  \/  ( ch  \/  th ) ) )
97, 8ecased 1383 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator