ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecased Unicode version

Theorem ecased 1349
Description: Deduction form of disjunctive syllogism. (Contributed by Jim Kingdon, 9-Dec-2017.)
Hypotheses
Ref Expression
ecased.1  |-  ( ph  ->  -.  ch )
ecased.2  |-  ( ph  ->  ( ps  \/  ch ) )
Assertion
Ref Expression
ecased  |-  ( ph  ->  ps )

Proof of Theorem ecased
StepHypRef Expression
1 ecased.1 . . 3  |-  ( ph  ->  -.  ch )
2 ecased.2 . . 3  |-  ( ph  ->  ( ps  \/  ch ) )
31, 2jca 306 . 2  |-  ( ph  ->  ( -.  ch  /\  ( ps  \/  ch ) ) )
4 orel2 726 . . 3  |-  ( -. 
ch  ->  ( ( ps  \/  ch )  ->  ps ) )
54imp 124 . 2  |-  ( ( -.  ch  /\  ( ps  \/  ch ) )  ->  ps )
63, 5syl 14 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ecase23d  1350  ontriexmidim  4521  preleq  4554  ordsuc  4562  reg3exmidlemwe  4578  sotri3  5027  diffisn  6892  onunsnss  6915  fival  6968  suplub2ti  6999  fodjum  7143  nninfwlpoimlemginf  7173  3nelsucpw1  7232  3nsssucpw1  7234  addnqprlemfl  7557  addnqprlemfu  7558  mulnqprlemfl  7573  mulnqprlemfu  7574  addcanprleml  7612  addcanprlemu  7613  cauappcvgprlemladdru  7654  cauappcvgprlemladdrl  7655  caucvgprlemladdrl  7676  caucvgprprlemaddq  7706  ltletr  8046  apreap  8543  ltleap  8588  uzm1  9557  xrltletr  9806  xaddf  9843  xaddval  9844  iseqf1olemqcl  10485  iseqf1olemnab  10487  iseqf1olemab  10488  exp3val  10521  zfz1isolemiso  10818  ltabs  11095  xrmaxiflemlub  11255  fprodsplitdc  11603  fprodcl2lem  11612  bezoutlemmain  11998  lgsval  14375  lgsfvalg  14376  lgsdilem  14398  lgsdir  14406  lgsabs1  14410  lgseisenlem1  14420  2sqlem7  14438  nninfalllem1  14727  nninfall  14728  nninfsellemqall  14734  nninffeq  14739  trilpolemeq1  14758  nconstwlpolem  14782
  Copyright terms: Public domain W3C validator