ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecase23d Unicode version

Theorem ecase23d 1340
Description: Variation of ecased 1339 with three disjuncts instead of two. (Contributed by NM, 22-Apr-1994.) (Revised by Jim Kingdon, 9-Dec-2017.)
Hypotheses
Ref Expression
ecase23d.1  |-  ( ph  ->  -.  ch )
ecase23d.2  |-  ( ph  ->  -.  th )
ecase23d.3  |-  ( ph  ->  ( ps  \/  ch  \/  th ) )
Assertion
Ref Expression
ecase23d  |-  ( ph  ->  ps )

Proof of Theorem ecase23d
StepHypRef Expression
1 ecase23d.1 . 2  |-  ( ph  ->  -.  ch )
2 ecase23d.2 . . 3  |-  ( ph  ->  -.  th )
3 ecase23d.3 . . . 4  |-  ( ph  ->  ( ps  \/  ch  \/  th ) )
4 df-3or 969 . . . 4  |-  ( ( ps  \/  ch  \/  th )  <->  ( ( ps  \/  ch )  \/ 
th ) )
53, 4sylib 121 . . 3  |-  ( ph  ->  ( ( ps  \/  ch )  \/  th )
)
62, 5ecased 1339 . 2  |-  ( ph  ->  ( ps  \/  ch ) )
71, 6ecased 1339 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698    \/ w3o 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 969
This theorem is referenced by:  iseqf1olemklt  10420  xrmaxiflemcl  11186  xrmaxifle  11187  xrmaxiflemab  11188  xrmaxiflemlub  11189  ennnfonelemex  12347
  Copyright terms: Public domain W3C validator