| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioran | Unicode version | ||
| Description: Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 783, anordc 959, or ianordc 901. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ioran |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.45 740 |
. . 3
| |
| 2 | pm2.46 741 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | simpl 109 |
. . . . 5
| |
| 5 | 4 | con2i 628 |
. . . 4
|
| 6 | simpr 110 |
. . . . 5
| |
| 7 | 6 | con2i 628 |
. . . 4
|
| 8 | 5, 7 | jaoi 718 |
. . 3
|
| 9 | 8 | con2i 628 |
. 2
|
| 10 | 3, 9 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.56 782 nnexmid 852 dcor 938 3ioran 996 3ori 1313 unssdif 3416 difundi 3433 dcun 3578 sotricim 4388 sotritrieq 4390 en2lp 4620 poxp 6341 nntri2 6603 finexdc 7025 unfidisj 7045 fidcenumlemrks 7081 pw1nel3 7377 sucpw1nel3 7379 onntri45 7387 aptipr 7789 lttri3 8187 letr 8190 apirr 8713 apti 8730 elnnz 9417 xrlttri3 9954 xrletr 9965 exp3val 10723 bcval4 10934 hashunlem 10986 maxleast 11639 xrmaxlesup 11685 lcmval 12500 lcmcllem 12504 lcmgcdlem 12514 isprm3 12555 pcpremul 12731 ivthinc 15230 lgsdir2 15625 2lgslem3 15693 structiedg0val 15754 bj-nnor 15870 pwtrufal 16136 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |