ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbir Unicode version

Theorem exbir 1424
Description: Exportation implication also converting head from biconditional to conditional. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
exbir  |-  ( ( ( ph  /\  ps )  ->  ( ch  <->  th )
)  ->  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) ) )

Proof of Theorem exbir
StepHypRef Expression
1 biimpr 129 . . 3  |-  ( ( ch  <->  th )  ->  ( th  ->  ch ) )
21imim2i 12 . 2  |-  ( ( ( ph  /\  ps )  ->  ( ch  <->  th )
)  ->  ( ( ph  /\  ps )  -> 
( th  ->  ch ) ) )
32expd 256 1  |-  ( ( ( ph  /\  ps )  ->  ( ch  <->  th )
)  ->  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator