![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim2i | Unicode version |
Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imim2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | a2i 11 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 59 imim3i 61 imim21b 253 jcab 603 pm4.78i 782 pm3.48 785 con1dc 856 jadc 863 pm5.6r 927 exbir 1436 19.21h 1557 nford 1567 19.21ht 1581 exim 1599 i19.24 1639 equsexd 1729 equvini 1758 nfexd 1761 sbimi 1764 sbcof2 1810 nfsb2or 1837 mopick 2104 r19.32r 2623 r19.36av 2628 ceqsalt 2765 vtoclgft 2789 spcgft 2816 spcegft 2818 elab3gf 2889 mo2icl 2918 euind 2926 reu6 2928 reuind 2944 sbciegft 2995 ssddif 3371 dfiin2g 3921 invdisj 3999 ordunisuc2r 4515 fnoprabg 5978 caucvgsr 7803 rexanre 11231 tgcnp 13748 lmcvg 13756 elabgft1 14569 bj-nntrans 14742 |
Copyright terms: Public domain | W3C validator |