![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim2i | Unicode version |
Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imim2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | a2i 11 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 59 imim3i 61 imim21b 253 jcab 603 pm4.78i 783 pm3.48 786 con1dc 857 jadc 864 pm5.6r 928 exbir 1447 19.21h 1568 nford 1578 19.21ht 1592 exim 1610 i19.24 1650 equsexd 1740 equvini 1769 nfexd 1772 sbimi 1775 sbcof2 1821 nfsb2or 1848 mopick 2120 r19.32r 2640 r19.36av 2645 ceqsalt 2786 vtoclgft 2810 spcgft 2837 spcegft 2839 elab3gf 2910 mo2icl 2939 euind 2947 reu6 2949 reuind 2965 sbciegft 3016 ssddif 3393 dfiin2g 3945 invdisj 4023 ordunisuc2r 4546 fnoprabg 6019 caucvgsr 7862 rexanre 11364 tgcnp 14377 lmcvg 14385 elabgft1 15270 bj-nntrans 15443 |
Copyright terms: Public domain | W3C validator |