ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbir GIF version

Theorem exbir 1424
Description: Exportation implication also converting head from biconditional to conditional. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
exbir (((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))

Proof of Theorem exbir
StepHypRef Expression
1 biimpr 129 . . 3 ((𝜒𝜃) → (𝜃𝜒))
21imim2i 12 . 2 (((𝜑𝜓) → (𝜒𝜃)) → ((𝜑𝜓) → (𝜃𝜒)))
32expd 256 1 (((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator