Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exintr | Unicode version |
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
exintr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exintrbi 1631 | . 2 | |
2 | 1 | biimpd 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wal 1351 wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ceqsex 2773 r19.2m 3507 r19.2mOLD 3508 |
Copyright terms: Public domain | W3C validator |