ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exintr Unicode version

Theorem exintr 1645
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
Assertion
Ref Expression
exintr  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x
( ph  /\  ps )
) )

Proof of Theorem exintr
StepHypRef Expression
1 exintrbi 1644 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  <->  E. x ( ph  /\ 
ps ) ) )
21biimpd 144 1  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x
( ph  /\  ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ceqsex  2798  r19.2m  3533  r19.2mOLD  3534
  Copyright terms: Public domain W3C validator