Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2m Unicode version

Theorem r19.2m 3449
 Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1617). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) (Revised by Jim Kingdon, 7-Apr-2023.)
Assertion
Ref Expression
r19.2m
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem r19.2m
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2200 . . . 4
21cbvexv 1890 . . 3
3 eleq1w 2200 . . . 4
43cbvexv 1890 . . 3
52, 4bitri 183 . 2
6 df-ral 2421 . . . . 5
7 exintr 1613 . . . . 5
86, 7sylbi 120 . . . 4
9 df-rex 2422 . . . 4
108, 9syl6ibr 161 . . 3
1110impcom 124 . 2
125, 11sylanbr 283 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103  wal 1329  wex 1468   wcel 1480  wral 2416  wrex 2417 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514 This theorem depends on definitions:  df-bi 116  df-clel 2135  df-ral 2421  df-rex 2422 This theorem is referenced by:  intssunim  3793  riinm  3885  iinexgm  4079  xpiindim  4676  cnviinm  5080  eusvobj2  5760  iinerm  6501  suplocexprlemml  7531  rexfiuz  10768  r19.2uz  10772  climuni  11069  cncnp2m  12410
 Copyright terms: Public domain W3C validator