ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exintrbi Unicode version

Theorem exintrbi 1626
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
Assertion
Ref Expression
exintrbi  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  <->  E. x ( ph  /\ 
ps ) ) )

Proof of Theorem exintrbi
StepHypRef Expression
1 pm4.71 387 . . 3  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
21albii 1463 . 2  |-  ( A. x ( ph  ->  ps )  <->  A. x ( ph  <->  (
ph  /\  ps )
) )
3 exbi 1597 . 2  |-  ( A. x ( ph  <->  ( ph  /\ 
ps ) )  -> 
( E. x ph  <->  E. x ( ph  /\  ps ) ) )
42, 3sylbi 120 1  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  <->  E. x ( ph  /\ 
ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exintr  1627
  Copyright terms: Public domain W3C validator