ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exintrbi Unicode version

Theorem exintrbi 1567
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
Assertion
Ref Expression
exintrbi  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  <->  E. x ( ph  /\ 
ps ) ) )

Proof of Theorem exintrbi
StepHypRef Expression
1 pm4.71 381 . . 3  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
21albii 1402 . 2  |-  ( A. x ( ph  ->  ps )  <->  A. x ( ph  <->  (
ph  /\  ps )
) )
3 exbi 1538 . 2  |-  ( A. x ( ph  <->  ( ph  /\ 
ps ) )  -> 
( E. x ph  <->  E. x ( ph  /\  ps ) ) )
42, 3sylbi 119 1  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  <->  E. x ( ph  /\ 
ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1285   E.wex 1424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-4 1443  ax-ial 1470
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  exintr  1568
  Copyright terms: Public domain W3C validator