ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2mOLD Unicode version

Theorem r19.2mOLD 3496
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1626). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) Obsolete version of r19.2m 3495 as of 7-Apr-2023. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r19.2mOLD  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  ph )  ->  E. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem r19.2mOLD
StepHypRef Expression
1 df-ral 2449 . . . 4  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
2 exintr 1622 . . . 4  |-  ( A. x ( x  e.  A  ->  ph )  -> 
( E. x  x  e.  A  ->  E. x
( x  e.  A  /\  ph ) ) )
31, 2sylbi 120 . . 3  |-  ( A. x  e.  A  ph  ->  ( E. x  x  e.  A  ->  E. x
( x  e.  A  /\  ph ) ) )
4 df-rex 2450 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
53, 4syl6ibr 161 . 2  |-  ( A. x  e.  A  ph  ->  ( E. x  x  e.  A  ->  E. x  e.  A  ph ) )
65impcom 124 1  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  ph )  ->  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-ral 2449  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator