ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1rel Unicode version

Theorem f1rel 5397
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1rel  |-  ( F : A -1-1-> B  ->  Rel  F )

Proof of Theorem f1rel
StepHypRef Expression
1 f1fn 5395 . 2  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fnrel 5286 . 2  |-  ( F  Fn  A  ->  Rel  F )
31, 2syl 14 1  |-  ( F : A -1-1-> B  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4609    Fn wfn 5183   -1-1->wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193
This theorem is referenced by:  f1dmvrnfibi  6909
  Copyright terms: Public domain W3C validator