ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5306
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5305 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5225 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 14 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4625   Fun wfun 5202    Fn wfn 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5210  df-fn 5211
This theorem is referenced by:  fnbr  5310  fnresdm  5317  fn0  5327  frel  5362  fcoi2  5389  f1rel  5417  f1ocnv  5466  dffn5im  5553  fnex  5730  fnexALT  6102  basmex  12487  basmexd  12488  ismgmn0  12643  istps  13101  topontopn  13106  cldrcl  13173  neiss2  13213
  Copyright terms: Public domain W3C validator