ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5221
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5220 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5140 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 14 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4544   Fun wfun 5117    Fn wfn 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fun 5125  df-fn 5126
This theorem is referenced by:  fnbr  5225  fnresdm  5232  fn0  5242  frel  5277  fcoi2  5304  f1rel  5332  f1ocnv  5380  dffn5im  5467  fnex  5642  fnexALT  6011  istps  12213  topontopn  12218  cldrcl  12285  neiss2  12325
  Copyright terms: Public domain W3C validator