ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5315
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5314 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5234 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 14 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4632   Fun wfun 5211    Fn wfn 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5219  df-fn 5220
This theorem is referenced by:  fnbr  5319  fnresdm  5326  fn0  5336  frel  5371  fcoi2  5398  f1rel  5426  f1ocnv  5475  dffn5im  5562  fnex  5739  fnexALT  6112  basmex  12521  basmexd  12522  ismgmn0  12777  istps  13535  topontopn  13540  cldrcl  13605  neiss2  13645
  Copyright terms: Public domain W3C validator