![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnrel | Unicode version |
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnrel |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5124 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | funrel 5045 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-fun 5030 df-fn 5031 |
This theorem is referenced by: fnbr 5129 fnresdm 5136 fn0 5146 frel 5178 fcoi2 5205 f1rel 5233 f1ocnv 5279 dffn5im 5363 fnex 5533 fnexALT 5898 istps 11791 topontopn 11796 cldrcl 11863 |
Copyright terms: Public domain | W3C validator |