ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5353
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5352 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5272 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 14 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4665   Fun wfun 5249    Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5257  df-fn 5258
This theorem is referenced by:  fnbr  5357  fnresdm  5364  fn0  5374  frel  5409  fcoi2  5436  f1rel  5464  f1ocnv  5514  dffn5im  5603  fnex  5781  fnexALT  6165  basmex  12680  basmexd  12681  ismgmn0  12944  psrelbas  14171  psradd  14174  psraddcl  14175  istps  14211  topontopn  14216  cldrcl  14281  neiss2  14321
  Copyright terms: Public domain W3C validator