ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5371
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5370 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5287 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 14 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4679   Fun wfun 5264    Fn wfn 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5272  df-fn 5273
This theorem is referenced by:  fnbr  5377  fnresdm  5384  fn0  5394  frel  5429  fcoi2  5456  f1rel  5484  f1ocnv  5534  dffn5im  5623  fnex  5805  fnexALT  6195  basmex  12833  basmexd  12834  ismgmn0  13132  psrelbas  14379  psradd  14383  psraddcl  14384  mplrcl  14398  mplbasss  14400  mpladd  14408  istps  14446  topontopn  14451  cldrcl  14516  neiss2  14556
  Copyright terms: Public domain W3C validator