ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrel Unicode version

Theorem fnrel 5125
Description: A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fnrel  |-  ( F  Fn  A  ->  Rel  F )

Proof of Theorem fnrel
StepHypRef Expression
1 fnfun 5124 . 2  |-  ( F  Fn  A  ->  Fun  F )
2 funrel 5045 . 2  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 14 1  |-  ( F  Fn  A  ->  Rel  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Rel wrel 4457   Fun wfun 5022    Fn wfn 5023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fun 5030  df-fn 5031
This theorem is referenced by:  fnbr  5129  fnresdm  5136  fn0  5146  frel  5178  fcoi2  5205  f1rel  5233  f1ocnv  5279  dffn5im  5363  fnex  5533  fnexALT  5898  istps  11791  topontopn  11796  cldrcl  11863
  Copyright terms: Public domain W3C validator