ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn Unicode version

Theorem f1fn 5395
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn  |-  ( F : A -1-1-> B  ->  F  Fn  A )

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5393 . 2  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 ffn 5337 . 2  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 14 1  |-  ( F : A -1-1-> B  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    Fn wfn 5183   -->wf 5184   -1-1->wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-f 5192  df-f1 5193
This theorem is referenced by:  f1fun  5396  f1rel  5397  f1dm  5398  f1ssr  5400  f1f1orn  5443  f1elima  5741  f1eqcocnv  5759  f1oiso  5794  phplem4dom  6828  f1finf1o  6912  updjudhcoinlf  7045  updjudhcoinrg  7046  updjud  7047  fihashf1rn  10702
  Copyright terms: Public domain W3C validator