ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn Unicode version

Theorem f1fn 5337
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn  |-  ( F : A -1-1-> B  ->  F  Fn  A )

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5335 . 2  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 ffn 5279 . 2  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 14 1  |-  ( F : A -1-1-> B  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    Fn wfn 5125   -->wf 5126   -1-1->wf1 5127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-f 5134  df-f1 5135
This theorem is referenced by:  f1fun  5338  f1rel  5339  f1dm  5340  f1ssr  5342  f1f1orn  5385  f1elima  5681  f1eqcocnv  5699  f1oiso  5734  phplem4dom  6763  f1finf1o  6842  updjudhcoinlf  6972  updjudhcoinrg  6973  updjud  6974  fihashf1rn  10566
  Copyright terms: Public domain W3C validator