ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn Unicode version

Theorem f1fn 5485
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn  |-  ( F : A -1-1-> B  ->  F  Fn  A )

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5483 . 2  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 ffn 5427 . 2  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 14 1  |-  ( F : A -1-1-> B  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    Fn wfn 5267   -->wf 5268   -1-1->wf1 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5276  df-f1 5277
This theorem is referenced by:  f1fun  5486  f1rel  5487  f1dm  5488  f1ssr  5490  f1f1orn  5535  f1elima  5844  f1eqcocnv  5862  f1oiso  5897  phplem4dom  6961  f1finf1o  7051  updjudhcoinlf  7184  updjudhcoinrg  7185  updjud  7186  fihashf1rn  10935  kerf1ghm  13643  domomsubct  15975
  Copyright terms: Public domain W3C validator