ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fn Unicode version

Theorem f1fn 5461
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fn  |-  ( F : A -1-1-> B  ->  F  Fn  A )

Proof of Theorem f1fn
StepHypRef Expression
1 f1f 5459 . 2  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 ffn 5403 . 2  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 14 1  |-  ( F : A -1-1-> B  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    Fn wfn 5249   -->wf 5250   -1-1->wf1 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5258  df-f1 5259
This theorem is referenced by:  f1fun  5462  f1rel  5463  f1dm  5464  f1ssr  5466  f1f1orn  5511  f1elima  5816  f1eqcocnv  5834  f1oiso  5869  phplem4dom  6918  f1finf1o  7006  updjudhcoinlf  7139  updjudhcoinrg  7140  updjud  7141  fihashf1rn  10859  kerf1ghm  13344
  Copyright terms: Public domain W3C validator