| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1dmvrnfibi | Unicode version | ||
| Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 7049. (Contributed by AV, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| f1dmvrnfibi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1rel 5487 |
. . . 4
| |
| 2 | 1 | ad2antlr 489 |
. . 3
|
| 3 | f1cnv 5548 |
. . . . 5
| |
| 4 | f1ofun 5526 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | ad2antlr 489 |
. . 3
|
| 7 | simpr 110 |
. . 3
| |
| 8 | funrnfi 7046 |
. . 3
| |
| 9 | 2, 6, 7, 8 | syl3anc 1250 |
. 2
|
| 10 | simpr 110 |
. . . 4
| |
| 11 | f1dm 5488 |
. . . . . . . 8
| |
| 12 | f1f1orn 5535 |
. . . . . . . 8
| |
| 13 | eleq1 2268 |
. . . . . . . . . . . 12
| |
| 14 | f1oeq2 5513 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | anbi12d 473 |
. . . . . . . . . . 11
|
| 16 | 15 | eqcoms 2208 |
. . . . . . . . . 10
|
| 17 | 16 | biimpd 144 |
. . . . . . . . 9
|
| 18 | 17 | expcomd 1461 |
. . . . . . . 8
|
| 19 | 11, 12, 18 | sylc 62 |
. . . . . . 7
|
| 20 | 19 | impcom 125 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | f1oeng 6850 |
. . . . 5
| |
| 23 | 21, 22 | syl 14 |
. . . 4
|
| 24 | enfii 6973 |
. . . 4
| |
| 25 | 10, 23, 24 | syl2anc 411 |
. . 3
|
| 26 | f1fun 5486 |
. . . . 5
| |
| 27 | 26 | ad2antlr 489 |
. . . 4
|
| 28 | fundmfibi 7042 |
. . . 4
| |
| 29 | 27, 28 | syl 14 |
. . 3
|
| 30 | 25, 29 | mpbird 167 |
. 2
|
| 31 | 9, 30 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-1st 6228 df-2nd 6229 df-1o 6504 df-er 6622 df-en 6830 df-fin 6832 |
| This theorem is referenced by: f1vrnfibi 7049 |
| Copyright terms: Public domain | W3C validator |