ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dmvrnfibi Unicode version

Theorem f1dmvrnfibi 6881
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6882. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1dmvrnfibi  |-  ( ( A  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )

Proof of Theorem f1dmvrnfibi
StepHypRef Expression
1 f1rel 5376 . . . 4  |-  ( F : A -1-1-> B  ->  Rel  F )
21ad2antlr 481 . . 3  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  F  e.  Fin )  ->  Rel  F
)
3 f1cnv 5435 . . . . 5  |-  ( F : A -1-1-> B  ->  `' F : ran  F -1-1-onto-> A
)
4 f1ofun 5413 . . . . 5  |-  ( `' F : ran  F -1-1-onto-> A  ->  Fun  `' F )
53, 4syl 14 . . . 4  |-  ( F : A -1-1-> B  ->  Fun  `' F )
65ad2antlr 481 . . 3  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  F  e.  Fin )  ->  Fun  `' F )
7 simpr 109 . . 3  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  F  e.  Fin )  ->  F  e. 
Fin )
8 funrnfi 6879 . . 3  |-  ( ( Rel  F  /\  Fun  `' F  /\  F  e. 
Fin )  ->  ran  F  e.  Fin )
92, 6, 7, 8syl3anc 1220 . 2  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  F  e.  Fin )  ->  ran  F  e.  Fin )
10 simpr 109 . . . 4  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  ran  F  e. 
Fin )  ->  ran  F  e.  Fin )
11 f1dm 5377 . . . . . . . 8  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
12 f1f1orn 5422 . . . . . . . 8  |-  ( F : A -1-1-> B  ->  F : A -1-1-onto-> ran  F )
13 eleq1 2220 . . . . . . . . . . . 12  |-  ( A  =  dom  F  -> 
( A  e.  V  <->  dom 
F  e.  V ) )
14 f1oeq2 5401 . . . . . . . . . . . 12  |-  ( A  =  dom  F  -> 
( F : A -1-1-onto-> ran  F  <-> 
F : dom  F -1-1-onto-> ran  F ) )
1513, 14anbi12d 465 . . . . . . . . . . 11  |-  ( A  =  dom  F  -> 
( ( A  e.  V  /\  F : A
-1-1-onto-> ran  F )  <->  ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F ) ) )
1615eqcoms 2160 . . . . . . . . . 10  |-  ( dom 
F  =  A  -> 
( ( A  e.  V  /\  F : A
-1-1-onto-> ran  F )  <->  ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F ) ) )
1716biimpd 143 . . . . . . . . 9  |-  ( dom 
F  =  A  -> 
( ( A  e.  V  /\  F : A
-1-1-onto-> ran  F )  ->  ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F
) ) )
1817expcomd 1421 . . . . . . . 8  |-  ( dom 
F  =  A  -> 
( F : A -1-1-onto-> ran  F  ->  ( A  e.  V  ->  ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F ) ) ) )
1911, 12, 18sylc 62 . . . . . . 7  |-  ( F : A -1-1-> B  -> 
( A  e.  V  ->  ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F ) ) )
2019impcom 124 . . . . . 6  |-  ( ( A  e.  V  /\  F : A -1-1-> B )  ->  ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F ) )
2120adantr 274 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  ran  F  e. 
Fin )  ->  ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F
) )
22 f1oeng 6695 . . . . 5  |-  ( ( dom  F  e.  V  /\  F : dom  F -1-1-onto-> ran  F )  ->  dom  F  ~~  ran  F )
2321, 22syl 14 . . . 4  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  ran  F  e. 
Fin )  ->  dom  F 
~~  ran  F )
24 enfii 6812 . . . 4  |-  ( ( ran  F  e.  Fin  /\ 
dom  F  ~~  ran  F
)  ->  dom  F  e. 
Fin )
2510, 23, 24syl2anc 409 . . 3  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  ran  F  e. 
Fin )  ->  dom  F  e.  Fin )
26 f1fun 5375 . . . . 5  |-  ( F : A -1-1-> B  ->  Fun  F )
2726ad2antlr 481 . . . 4  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  ran  F  e. 
Fin )  ->  Fun  F )
28 fundmfibi 6876 . . . 4  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
2927, 28syl 14 . . 3  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  ran  F  e. 
Fin )  ->  ( F  e.  Fin  <->  dom  F  e. 
Fin ) )
3025, 29mpbird 166 . 2  |-  ( ( ( A  e.  V  /\  F : A -1-1-> B
)  /\  ran  F  e. 
Fin )  ->  F  e.  Fin )
319, 30impbida 586 1  |-  ( ( A  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   class class class wbr 3965   `'ccnv 4582   dom cdm 4583   ran crn 4584   Rel wrel 4588   Fun wfun 5161   -1-1->wf1 5164   -1-1-onto->wf1o 5166    ~~ cen 6676   Fincfn 6678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-1st 6082  df-2nd 6083  df-1o 6357  df-er 6473  df-en 6679  df-fin 6681
This theorem is referenced by:  f1vrnfibi  6882
  Copyright terms: Public domain W3C validator