Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1dmvrnfibi | Unicode version |
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6910. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
f1dmvrnfibi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1rel 5397 | . . . 4 | |
2 | 1 | ad2antlr 481 | . . 3 |
3 | f1cnv 5456 | . . . . 5 | |
4 | f1ofun 5434 | . . . . 5 | |
5 | 3, 4 | syl 14 | . . . 4 |
6 | 5 | ad2antlr 481 | . . 3 |
7 | simpr 109 | . . 3 | |
8 | funrnfi 6907 | . . 3 | |
9 | 2, 6, 7, 8 | syl3anc 1228 | . 2 |
10 | simpr 109 | . . . 4 | |
11 | f1dm 5398 | . . . . . . . 8 | |
12 | f1f1orn 5443 | . . . . . . . 8 | |
13 | eleq1 2229 | . . . . . . . . . . . 12 | |
14 | f1oeq2 5422 | . . . . . . . . . . . 12 | |
15 | 13, 14 | anbi12d 465 | . . . . . . . . . . 11 |
16 | 15 | eqcoms 2168 | . . . . . . . . . 10 |
17 | 16 | biimpd 143 | . . . . . . . . 9 |
18 | 17 | expcomd 1429 | . . . . . . . 8 |
19 | 11, 12, 18 | sylc 62 | . . . . . . 7 |
20 | 19 | impcom 124 | . . . . . 6 |
21 | 20 | adantr 274 | . . . . 5 |
22 | f1oeng 6723 | . . . . 5 | |
23 | 21, 22 | syl 14 | . . . 4 |
24 | enfii 6840 | . . . 4 | |
25 | 10, 23, 24 | syl2anc 409 | . . 3 |
26 | f1fun 5396 | . . . . 5 | |
27 | 26 | ad2antlr 481 | . . . 4 |
28 | fundmfibi 6904 | . . . 4 | |
29 | 27, 28 | syl 14 | . . 3 |
30 | 25, 29 | mpbird 166 | . 2 |
31 | 9, 30 | impbida 586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 class class class wbr 3982 ccnv 4603 cdm 4604 crn 4605 wrel 4609 wfun 5182 wf1 5185 wf1o 5187 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: f1vrnfibi 6910 |
Copyright terms: Public domain | W3C validator |