Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1dmvrnfibi | Unicode version |
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6922. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
f1dmvrnfibi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1rel 5407 | . . . 4 | |
2 | 1 | ad2antlr 486 | . . 3 |
3 | f1cnv 5466 | . . . . 5 | |
4 | f1ofun 5444 | . . . . 5 | |
5 | 3, 4 | syl 14 | . . . 4 |
6 | 5 | ad2antlr 486 | . . 3 |
7 | simpr 109 | . . 3 | |
8 | funrnfi 6919 | . . 3 | |
9 | 2, 6, 7, 8 | syl3anc 1233 | . 2 |
10 | simpr 109 | . . . 4 | |
11 | f1dm 5408 | . . . . . . . 8 | |
12 | f1f1orn 5453 | . . . . . . . 8 | |
13 | eleq1 2233 | . . . . . . . . . . . 12 | |
14 | f1oeq2 5432 | . . . . . . . . . . . 12 | |
15 | 13, 14 | anbi12d 470 | . . . . . . . . . . 11 |
16 | 15 | eqcoms 2173 | . . . . . . . . . 10 |
17 | 16 | biimpd 143 | . . . . . . . . 9 |
18 | 17 | expcomd 1434 | . . . . . . . 8 |
19 | 11, 12, 18 | sylc 62 | . . . . . . 7 |
20 | 19 | impcom 124 | . . . . . 6 |
21 | 20 | adantr 274 | . . . . 5 |
22 | f1oeng 6735 | . . . . 5 | |
23 | 21, 22 | syl 14 | . . . 4 |
24 | enfii 6852 | . . . 4 | |
25 | 10, 23, 24 | syl2anc 409 | . . 3 |
26 | f1fun 5406 | . . . . 5 | |
27 | 26 | ad2antlr 486 | . . . 4 |
28 | fundmfibi 6916 | . . . 4 | |
29 | 27, 28 | syl 14 | . . 3 |
30 | 25, 29 | mpbird 166 | . 2 |
31 | 9, 30 | impbida 591 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 ccnv 4610 cdm 4611 crn 4612 wrel 4616 wfun 5192 wf1 5195 wf1o 5197 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: f1vrnfibi 6922 |
Copyright terms: Public domain | W3C validator |