Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1dmvrnfibi | Unicode version |
Description: A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6882. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
f1dmvrnfibi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1rel 5376 | . . . 4 | |
2 | 1 | ad2antlr 481 | . . 3 |
3 | f1cnv 5435 | . . . . 5 | |
4 | f1ofun 5413 | . . . . 5 | |
5 | 3, 4 | syl 14 | . . . 4 |
6 | 5 | ad2antlr 481 | . . 3 |
7 | simpr 109 | . . 3 | |
8 | funrnfi 6879 | . . 3 | |
9 | 2, 6, 7, 8 | syl3anc 1220 | . 2 |
10 | simpr 109 | . . . 4 | |
11 | f1dm 5377 | . . . . . . . 8 | |
12 | f1f1orn 5422 | . . . . . . . 8 | |
13 | eleq1 2220 | . . . . . . . . . . . 12 | |
14 | f1oeq2 5401 | . . . . . . . . . . . 12 | |
15 | 13, 14 | anbi12d 465 | . . . . . . . . . . 11 |
16 | 15 | eqcoms 2160 | . . . . . . . . . 10 |
17 | 16 | biimpd 143 | . . . . . . . . 9 |
18 | 17 | expcomd 1421 | . . . . . . . 8 |
19 | 11, 12, 18 | sylc 62 | . . . . . . 7 |
20 | 19 | impcom 124 | . . . . . 6 |
21 | 20 | adantr 274 | . . . . 5 |
22 | f1oeng 6695 | . . . . 5 | |
23 | 21, 22 | syl 14 | . . . 4 |
24 | enfii 6812 | . . . 4 | |
25 | 10, 23, 24 | syl2anc 409 | . . 3 |
26 | f1fun 5375 | . . . . 5 | |
27 | 26 | ad2antlr 481 | . . . 4 |
28 | fundmfibi 6876 | . . . 4 | |
29 | 27, 28 | syl 14 | . . 3 |
30 | 25, 29 | mpbird 166 | . 2 |
31 | 9, 30 | impbida 586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 class class class wbr 3965 ccnv 4582 cdm 4583 crn 4584 wrel 4588 wfun 5161 wf1 5164 wf1o 5166 cen 6676 cfn 6678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1st 6082 df-2nd 6083 df-1o 6357 df-er 6473 df-en 6679 df-fin 6681 |
This theorem is referenced by: f1vrnfibi 6882 |
Copyright terms: Public domain | W3C validator |