ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fun Unicode version

Theorem f1fun 5406
Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1fun  |-  ( F : A -1-1-> B  ->  Fun  F )

Proof of Theorem f1fun
StepHypRef Expression
1 f1fn 5405 . 2  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 fnfun 5295 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 14 1  |-  ( F : A -1-1-> B  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5192    Fn wfn 5193   -1-1->wf1 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-fn 5201  df-f 5202  df-f1 5203
This theorem is referenced by:  f1cocnv2  5470  f1o2ndf1  6207  f1dmvrnfibi  6921  djuinj  7083
  Copyright terms: Public domain W3C validator