Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > falxortru | Unicode version |
Description: A identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
Ref | Expression |
---|---|
falxortru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1366 | . 2 | |
2 | falortru 1397 | . . 3 | |
3 | notfal 1404 | . . . 4 | |
4 | falantru 1393 | . . . 4 | |
5 | 3, 4 | xchnxbir 671 | . . 3 |
6 | 2, 5 | anbi12i 456 | . 2 |
7 | anidm 394 | . 2 | |
8 | 1, 6, 7 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 698 wtru 1344 wfal 1348 wxo 1365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-xor 1366 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |