ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falxortru Unicode version

Theorem falxortru 1416
Description: A  \/_ identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
Assertion
Ref Expression
falxortru  |-  ( ( F.  \/_ T.  )  <-> T.  )

Proof of Theorem falxortru
StepHypRef Expression
1 df-xor 1371 . 2  |-  ( ( F.  \/_ T.  )  <->  ( ( F.  \/ T.  )  /\  -.  ( F. 
/\ T.  ) ) )
2 falortru 1402 . . 3  |-  ( ( F.  \/ T.  )  <-> T.  )
3 notfal 1409 . . . 4  |-  ( -. F.  <-> T.  )
4 falantru 1398 . . . 4  |-  ( ( F.  /\ T.  )  <-> F.  )
53, 4xchnxbir 676 . . 3  |-  ( -.  ( F.  /\ T.  ) 
<-> T.  )
62, 5anbi12i 457 . 2  |-  ( ( ( F.  \/ T.  )  /\  -.  ( F. 
/\ T.  ) )  <-> 
( T.  /\ T.  ) )
7 anidm 394 . 2  |-  ( ( T.  /\ T.  )  <-> T.  )
81, 6, 73bitri 205 1  |-  ( ( F.  \/_ T.  )  <-> T.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 703   T. wtru 1349   F. wfal 1353    \/_ wxo 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-xor 1371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator