ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  felapton Unicode version

Theorem felapton 2133
Description: "Felapton", one of the syllogisms of Aristotelian logic. No  ph is  ps, all  ph is  ch, and some  ph exist, therefore some  ch is not  ps. (In Aristotelian notation, EAO-3: MeP and MaS therefore SoP.) For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
felapton.maj  |-  A. x
( ph  ->  -.  ps )
felapton.min  |-  A. x
( ph  ->  ch )
felapton.e  |-  E. x ph
Assertion
Ref Expression
felapton  |-  E. x
( ch  /\  -.  ps )

Proof of Theorem felapton
StepHypRef Expression
1 felapton.e . 2  |-  E. x ph
2 felapton.min . . . 4  |-  A. x
( ph  ->  ch )
32spi 1529 . . 3  |-  ( ph  ->  ch )
4 felapton.maj . . . 4  |-  A. x
( ph  ->  -.  ps )
54spi 1529 . . 3  |-  ( ph  ->  -.  ps )
63, 5jca 304 . 2  |-  ( ph  ->  ( ch  /\  -.  ps ) )
71, 6eximii 1595 1  |-  E. x
( ch  /\  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator