Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > felapton | GIF version |
Description: "Felapton", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EAO-3: MeP and MaS therefore SoP.) For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
felapton.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
felapton.min | ⊢ ∀𝑥(𝜑 → 𝜒) |
felapton.e | ⊢ ∃𝑥𝜑 |
Ref | Expression |
---|---|
felapton | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | felapton.e | . 2 ⊢ ∃𝑥𝜑 | |
2 | felapton.min | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜒) | |
3 | 2 | spi 1516 | . . 3 ⊢ (𝜑 → 𝜒) |
4 | felapton.maj | . . . 4 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
5 | 4 | spi 1516 | . . 3 ⊢ (𝜑 → ¬ 𝜓) |
6 | 3, 5 | jca 304 | . 2 ⊢ (𝜑 → (𝜒 ∧ ¬ 𝜓)) |
7 | 1, 6 | eximii 1582 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1333 ∃wex 1472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |