ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  i19.39 Unicode version

Theorem i19.39 1628
Description: Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1612, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
Hypothesis
Ref Expression
i19.24.1  |-  ( ( A. x ph  ->  E. x ps )  ->  E. x ( ph  ->  ps ) )
Assertion
Ref Expression
i19.39  |-  ( ( E. x ph  ->  E. x ps )  ->  E. x ( ph  ->  ps ) )

Proof of Theorem i19.39
StepHypRef Expression
1 19.2 1626 . . 3  |-  ( A. x ph  ->  E. x ph )
21imim1i 60 . 2  |-  ( ( E. x ph  ->  E. x ps )  -> 
( A. x ph  ->  E. x ps )
)
3 i19.24.1 . 2  |-  ( ( A. x ph  ->  E. x ps )  ->  E. x ( ph  ->  ps ) )
42, 3syl 14 1  |-  ( ( E. x ph  ->  E. x ps )  ->  E. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator