ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  i19.39 GIF version

Theorem i19.39 1633
Description: Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1617, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
Hypothesis
Ref Expression
i19.24.1 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
Assertion
Ref Expression
i19.39 ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))

Proof of Theorem i19.39
StepHypRef Expression
1 19.2 1631 . . 3 (∀𝑥𝜑 → ∃𝑥𝜑)
21imim1i 60 . 2 ((∃𝑥𝜑 → ∃𝑥𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
3 i19.24.1 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
42, 3syl 14 1 ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator