ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9ht Unicode version

Theorem 19.9ht 1664
Description: A closed version of one direction of 19.9 1667. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.9ht  |-  ( A. x ( ph  ->  A. x ph )  -> 
( E. x ph  ->  ph ) )

Proof of Theorem 19.9ht
StepHypRef Expression
1 id 19 . . 3  |-  ( ph  ->  ph )
21ax-gen 1472 . 2  |-  A. x
( ph  ->  ph )
3 19.23ht 1520 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ph )  <->  ( E. x ph  ->  ph ) ) )
42, 3mpbii 148 1  |-  ( A. x ( ph  ->  A. x ph )  -> 
( E. x ph  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1472  ax-ie2 1517
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.9t  1665  19.9h  1666  19.9hd  1685
  Copyright terms: Public domain W3C validator