ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 Unicode version

Theorem imp31 254
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
imp31  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21imp 123 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
32imp 123 1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  imp41  351  imp5d  357  impl  378  anassrs  398  an31s  560  con4biddc  843  3imp  1176  3expa  1182  bilukdc  1375  reusv3  4414  dfimafn  5510  funimass4  5512  funimass3  5576  isopolem  5763  smores2  6231  tfrlem9  6256  nnmordi  6452  mulcanpig  7234  elnnz  9156  nzadd  9198  irradd  9533  irrmul  9534  uzsubsubfz  9927  fzo1fzo0n0  10060  elfzonelfzo  10107  tgcl  12403
  Copyright terms: Public domain W3C validator