ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 Unicode version

Theorem imp31 256
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
imp31  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21imp 124 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
32imp 124 1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp41  353  imp5d  359  impl  380  anassrs  400  an31s  570  con4biddc  858  3imp  1195  3expa  1205  bilukdc  1407  reusv3  4492  dfimafn  5606  funimass4  5608  funimass3  5675  isopolem  5866  smores2  6349  tfrlem9  6374  nnmordi  6571  mulcanpig  7397  elnnz  9330  nzadd  9372  irradd  9714  irrmul  9715  uzsubsubfz  10116  fzo1fzo0n0  10253  elfzonelfzo  10300  infpnlem1  12500  tgcl  14243
  Copyright terms: Public domain W3C validator