ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 Unicode version

Theorem imp31 256
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
imp31  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21imp 124 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
32imp 124 1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp41  353  imp5d  359  impl  380  anassrs  400  an31s  570  con4biddc  857  3imp  1193  3expa  1203  bilukdc  1396  reusv3  4462  dfimafn  5566  funimass4  5568  funimass3  5634  isopolem  5825  smores2  6297  tfrlem9  6322  nnmordi  6519  mulcanpig  7336  elnnz  9265  nzadd  9307  irradd  9648  irrmul  9649  uzsubsubfz  10049  fzo1fzo0n0  10185  elfzonelfzo  10232  infpnlem1  12359  tgcl  13603
  Copyright terms: Public domain W3C validator