ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impidc Unicode version

Theorem impidc 853
Description: An importation inference for a decidable consequent. (Contributed by Jim Kingdon, 30-Apr-2018.)
Hypothesis
Ref Expression
impidc.1  |-  (DECID  ch  ->  (
ph  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
impidc  |-  (DECID  ch  ->  ( -.  ( ph  ->  -. 
ps )  ->  ch ) )

Proof of Theorem impidc
StepHypRef Expression
1 impidc.1 . . . . . 6  |-  (DECID  ch  ->  (
ph  ->  ( ps  ->  ch ) ) )
21imp 123 . . . . 5  |-  ( (DECID  ch 
/\  ph )  ->  ( ps  ->  ch ) )
32con3d 626 . . . 4  |-  ( (DECID  ch 
/\  ph )  ->  ( -.  ch  ->  -.  ps )
)
43ex 114 . . 3  |-  (DECID  ch  ->  (
ph  ->  ( -.  ch  ->  -.  ps ) ) )
54com23 78 . 2  |-  (DECID  ch  ->  ( -.  ch  ->  ( ph  ->  -.  ps )
) )
6 con1dc 851 . 2  |-  (DECID  ch  ->  ( ( -.  ch  ->  (
ph  ->  -.  ps )
)  ->  ( -.  ( ph  ->  -.  ps )  ->  ch ) ) )
75, 6mpd 13 1  |-  (DECID  ch  ->  ( -.  ( ph  ->  -. 
ps )  ->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  simprimdc  854
  Copyright terms: Public domain W3C validator