| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con4biddc | Unicode version | ||
| Description: A contraposition deduction. (Contributed by Jim Kingdon, 18-May-2018.) |
| Ref | Expression |
|---|---|
| con4biddc.1 |
|
| Ref | Expression |
|---|---|
| con4biddc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con4biddc.1 |
. . . . . 6
| |
| 2 | biimpr 130 |
. . . . . 6
| |
| 3 | 1, 2 | syl8 71 |
. . . . 5
|
| 4 | condc 854 |
. . . . . 6
| |
| 5 | 4 | a2i 11 |
. . . . 5
|
| 6 | 3, 5 | syl6 33 |
. . . 4
|
| 7 | 6 | imp31 256 |
. . 3
|
| 8 | biimp 118 |
. . . . . 6
| |
| 9 | 1, 8 | syl8 71 |
. . . . 5
|
| 10 | condc 854 |
. . . . . 6
| |
| 11 | 10 | imim2d 54 |
. . . . 5
|
| 12 | 9, 11 | sylcom 28 |
. . . 4
|
| 13 | 12 | imp31 256 |
. . 3
|
| 14 | 7, 13 | impbid 129 |
. 2
|
| 15 | 14 | exp31 364 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: necon4abiddc 2440 |
| Copyright terms: Public domain | W3C validator |