Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impidc | GIF version |
Description: An importation inference for a decidable consequent. (Contributed by Jim Kingdon, 30-Apr-2018.) |
Ref | Expression |
---|---|
impidc.1 | ⊢ (DECID 𝜒 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
impidc | ⊢ (DECID 𝜒 → (¬ (𝜑 → ¬ 𝜓) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impidc.1 | . . . . . 6 ⊢ (DECID 𝜒 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | imp 123 | . . . . 5 ⊢ ((DECID 𝜒 ∧ 𝜑) → (𝜓 → 𝜒)) |
3 | 2 | con3d 626 | . . . 4 ⊢ ((DECID 𝜒 ∧ 𝜑) → (¬ 𝜒 → ¬ 𝜓)) |
4 | 3 | ex 114 | . . 3 ⊢ (DECID 𝜒 → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) |
5 | 4 | com23 78 | . 2 ⊢ (DECID 𝜒 → (¬ 𝜒 → (𝜑 → ¬ 𝜓))) |
6 | con1dc 851 | . 2 ⊢ (DECID 𝜒 → ((¬ 𝜒 → (𝜑 → ¬ 𝜓)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒))) | |
7 | 5, 6 | mpd 13 | 1 ⊢ (DECID 𝜒 → (¬ (𝜑 → ¬ 𝜓) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: simprimdc 854 |
Copyright terms: Public domain | W3C validator |