ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca31 Unicode version

Theorem jca31 305
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1  |-  ( ph  ->  ps )
jca31.2  |-  ( ph  ->  ch )
jca31.3  |-  ( ph  ->  th )
Assertion
Ref Expression
jca31  |-  ( ph  ->  ( ( ps  /\  ch )  /\  th )
)

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3  |-  ( ph  ->  ps )
2 jca31.2 . . 3  |-  ( ph  ->  ch )
31, 2jca 302 . 2  |-  ( ph  ->  ( ps  /\  ch ) )
4 jca31.3 . 2  |-  ( ph  ->  th )
53, 4jca 302 1  |-  ( ph  ->  ( ( ps  /\  ch )  /\  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 107
This theorem is referenced by:  3jca  1129  syl21anc  1183  f1oiso2  5660  nnnq0lem1  7155  prmuloc  7275  prsrlem1  7438  apreap  8215  lemulge11  8482  elnnz  8916  supinfneg  9240  infsupneg  9241  leexp1a  10189  faclbnd6  10331  zfz1isolem1  10424  oddpwdclemdc  11643  ennnfonelemf1  11723  cncnp2m  12181
  Copyright terms: Public domain W3C validator