| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | Unicode version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 |
|
| jcad.2 |
|
| Ref | Expression |
|---|---|
| jcad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 |
. 2
| |
| 2 | jcad.2 |
. 2
| |
| 3 | pm3.2 139 |
. 2
| |
| 4 | 1, 2, 3 | syl6c 66 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1752 equsexd 1753 rexim 2602 rr19.28v 2920 sotricim 4388 sotritrieq 4390 ordsucss 4570 ordpwsucss 4633 peano5 4664 iss 5024 funssres 5332 ssimaex 5663 elpreima 5722 resflem 5767 tposfo2 6376 nnmord 6626 map0g 6798 mapsn 6800 enq0tr 7582 addnqprl 7677 addnqpru 7678 cauappcvgprlemdisj 7799 lttri3 8187 ltleap 8740 mulgt1 8971 nominpos 9310 uzind 9519 indstr 9749 eqreznegel 9770 ccatopth 11207 shftuz 11243 caucvgrelemcau 11406 sqrtsq 11470 mulcn2 11738 dvdsgcdb 12449 algcvgblem 12486 lcmdvdsb 12521 rpexp 12590 infpnlem1 12797 imasring 13941 unitmulclb 13991 cnntr 14812 cnrest2 14823 txlm 14866 metrest 15093 bj-om 16072 |
| Copyright terms: Public domain | W3C validator |