![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jcad | Unicode version |
Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jcad.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
jcad |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jcad.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | pm3.2 139 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl6c 66 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1739 equsexd 1740 rexim 2588 rr19.28v 2901 sotricim 4355 sotritrieq 4357 ordsucss 4537 ordpwsucss 4600 peano5 4631 iss 4989 funssres 5297 ssimaex 5619 elpreima 5678 resflem 5723 tposfo2 6322 nnmord 6572 map0g 6744 mapsn 6746 enq0tr 7496 addnqprl 7591 addnqpru 7592 cauappcvgprlemdisj 7713 lttri3 8101 ltleap 8653 mulgt1 8884 nominpos 9223 uzind 9431 indstr 9661 eqreznegel 9682 shftuz 10964 caucvgrelemcau 11127 sqrtsq 11191 mulcn2 11458 dvdsgcdb 12153 algcvgblem 12190 lcmdvdsb 12225 rpexp 12294 infpnlem1 12500 imasring 13563 unitmulclb 13613 cnntr 14404 cnrest2 14415 txlm 14458 metrest 14685 bj-om 15499 |
Copyright terms: Public domain | W3C validator |