| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | Unicode version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 |
|
| jcad.2 |
|
| Ref | Expression |
|---|---|
| jcad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 |
. 2
| |
| 2 | jcad.2 |
. 2
| |
| 3 | pm3.2 139 |
. 2
| |
| 4 | 1, 2, 3 | syl6c 66 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1742 equsexd 1743 rexim 2591 rr19.28v 2904 sotricim 4359 sotritrieq 4361 ordsucss 4541 ordpwsucss 4604 peano5 4635 iss 4993 funssres 5301 ssimaex 5625 elpreima 5684 resflem 5729 tposfo2 6334 nnmord 6584 map0g 6756 mapsn 6758 enq0tr 7518 addnqprl 7613 addnqpru 7614 cauappcvgprlemdisj 7735 lttri3 8123 ltleap 8676 mulgt1 8907 nominpos 9246 uzind 9454 indstr 9684 eqreznegel 9705 shftuz 10999 caucvgrelemcau 11162 sqrtsq 11226 mulcn2 11494 dvdsgcdb 12205 algcvgblem 12242 lcmdvdsb 12277 rpexp 12346 infpnlem1 12553 imasring 13696 unitmulclb 13746 cnntr 14545 cnrest2 14556 txlm 14599 metrest 14826 bj-om 15667 |
| Copyright terms: Public domain | W3C validator |