| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | Unicode version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 |
|
| jcad.2 |
|
| Ref | Expression |
|---|---|
| jcad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 |
. 2
| |
| 2 | jcad.2 |
. 2
| |
| 3 | pm3.2 139 |
. 2
| |
| 4 | 1, 2, 3 | syl6c 66 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1774 equsexd 1775 rexim 2624 rr19.28v 2943 sotricim 4413 sotritrieq 4415 ordsucss 4595 ordpwsucss 4658 peano5 4689 iss 5050 funssres 5359 ssimaex 5694 elpreima 5753 resflem 5798 tposfo2 6411 nnmord 6661 map0g 6833 mapsn 6835 enq0tr 7617 addnqprl 7712 addnqpru 7713 cauappcvgprlemdisj 7834 lttri3 8222 ltleap 8775 mulgt1 9006 nominpos 9345 uzind 9554 indstr 9784 eqreznegel 9805 ccatopth 11243 shftuz 11323 caucvgrelemcau 11486 sqrtsq 11550 mulcn2 11818 dvdsgcdb 12529 algcvgblem 12566 lcmdvdsb 12601 rpexp 12670 infpnlem1 12877 imasring 14022 unitmulclb 14072 cnntr 14893 cnrest2 14904 txlm 14947 metrest 15174 bj-om 16258 |
| Copyright terms: Public domain | W3C validator |