| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | Unicode version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 |
|
| jcad.2 |
|
| Ref | Expression |
|---|---|
| jcad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 |
. 2
| |
| 2 | jcad.2 |
. 2
| |
| 3 | pm3.2 139 |
. 2
| |
| 4 | 1, 2, 3 | syl6c 66 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1751 equsexd 1752 rexim 2600 rr19.28v 2913 sotricim 4370 sotritrieq 4372 ordsucss 4552 ordpwsucss 4615 peano5 4646 iss 5005 funssres 5313 ssimaex 5640 elpreima 5699 resflem 5744 tposfo2 6353 nnmord 6603 map0g 6775 mapsn 6777 enq0tr 7547 addnqprl 7642 addnqpru 7643 cauappcvgprlemdisj 7764 lttri3 8152 ltleap 8705 mulgt1 8936 nominpos 9275 uzind 9484 indstr 9714 eqreznegel 9735 shftuz 11128 caucvgrelemcau 11291 sqrtsq 11355 mulcn2 11623 dvdsgcdb 12334 algcvgblem 12371 lcmdvdsb 12406 rpexp 12475 infpnlem1 12682 imasring 13826 unitmulclb 13876 cnntr 14697 cnrest2 14708 txlm 14751 metrest 14978 bj-om 15873 |
| Copyright terms: Public domain | W3C validator |