| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | Unicode version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 |
|
| jcad.2 |
|
| Ref | Expression |
|---|---|
| jcad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 |
. 2
| |
| 2 | jcad.2 |
. 2
| |
| 3 | pm3.2 139 |
. 2
| |
| 4 | 1, 2, 3 | syl6c 66 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1750 equsexd 1751 rexim 2599 rr19.28v 2912 sotricim 4369 sotritrieq 4371 ordsucss 4551 ordpwsucss 4614 peano5 4645 iss 5004 funssres 5312 ssimaex 5639 elpreima 5698 resflem 5743 tposfo2 6352 nnmord 6602 map0g 6774 mapsn 6776 enq0tr 7546 addnqprl 7641 addnqpru 7642 cauappcvgprlemdisj 7763 lttri3 8151 ltleap 8704 mulgt1 8935 nominpos 9274 uzind 9483 indstr 9713 eqreznegel 9734 shftuz 11099 caucvgrelemcau 11262 sqrtsq 11326 mulcn2 11594 dvdsgcdb 12305 algcvgblem 12342 lcmdvdsb 12377 rpexp 12446 infpnlem1 12653 imasring 13797 unitmulclb 13847 cnntr 14668 cnrest2 14679 txlm 14722 metrest 14949 bj-om 15835 |
| Copyright terms: Public domain | W3C validator |