ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbn2 Unicode version

Theorem nbn2 697
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
nbn2  |-  ( -. 
ph  ->  ( -.  ps  <->  (
ph 
<->  ps ) ) )

Proof of Theorem nbn2
StepHypRef Expression
1 pm5.21im 696 . 2  |-  ( -. 
ph  ->  ( -.  ps  ->  ( ph  <->  ps )
) )
2 biimpr 130 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
3 mtt 685 . . 3  |-  ( -. 
ph  ->  ( -.  ps  <->  ( ps  ->  ph ) ) )
42, 3imbitrrid 156 . 2  |-  ( -. 
ph  ->  ( ( ph  <->  ps )  ->  -.  ps )
)
51, 4impbid 129 1  |-  ( -. 
ph  ->  ( -.  ps  <->  (
ph 
<->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibif  698  pm5.18dc  883  biassdc  1395
  Copyright terms: Public domain W3C validator