| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrrid | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| imbitrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. 2
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 2 | bicomd 141 |
. 2
|
| 4 | 1, 3 | imbitrid 154 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 699 limelon 4446 eldifpw 4524 ssonuni 4536 onsucuni2 4612 peano2 4643 limom 4662 elrnmpt1 4929 cnveqb 5138 cnveq0 5139 relcoi1 5214 ndmfvg 5607 ffvresb 5743 caovord3d 6117 poxp 6318 nnm0r 6565 nnacl 6566 nnacom 6570 nnaass 6571 nndi 6572 nnmass 6573 nnmsucr 6574 nnmcom 6575 brecop 6712 ecopovtrn 6719 ecopovtrng 6722 elpm2r 6753 map0g 6775 fundmen 6898 mapxpen 6945 phpm 6962 f1vrnfibi 7047 elfir 7075 mulcmpblnq 7481 ordpipqqs 7487 mulcmpblnq0 7557 genpprecll 7627 genppreclu 7628 addcmpblnr 7852 ax1rid 7990 axpre-mulgt0 8000 cnegexlem1 8247 msqge0 8689 mulge0 8692 ltleap 8705 nnmulcl 9057 nnsub 9075 elnn0z 9385 ztri3or0 9414 nneoor 9475 uz11 9671 xltnegi 9957 frec2uzuzd 10547 seq3fveq2 10620 seqfveq2g 10622 seq3shft2 10626 seqshft2g 10627 seq3split 10633 seqsplitg 10634 seq3caopr3 10636 seqcaopr3g 10637 seqf1oglem2a 10663 seq3id2 10671 seq3homo 10672 seqhomog 10675 m1expcl2 10706 expadd 10726 expmul 10729 faclbnd 10886 hashfzp1 10969 hashfacen 10981 seq3coll 10987 wrdsymb0 11026 len0nnbi 11028 caucvgrelemcau 11291 recan 11420 rexanre 11531 fsumiun 11788 efexp 11993 dvdstr 12139 alzdvds 12165 zob 12202 bitsinv1 12273 gcdmultiplez 12342 dvdssq 12352 cncongr2 12426 prmdiveq 12558 pythagtriplem2 12589 pcexp 12632 elrestr 13079 ptex 13096 xpsff1o 13181 dfgrp3me 13432 mulgneg2 13492 mulgnnass 13493 mhmmulg 13499 rngpropd 13717 ringadd2 13789 mulgass2 13820 opprrngbg 13840 opprsubrngg 13973 subrngpropd 13978 subrgpropd 14015 rhmpropd 14016 lmodprop2d 14110 cnfldmulg 14338 cnfldexp 14339 restopn2 14655 txcn 14747 txlm 14751 isxms2 14924 rpcxpmul2 15385 gausslemma2dlem0i 15534 bj-om 15873 bj-inf2vnlem2 15907 bj-inf2vn 15910 bj-inf2vn2 15911 |
| Copyright terms: Public domain | W3C validator |