![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrrid | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
imbitrrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
imbitrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbitrrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbitrrid.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomd 141 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | imbitrid 154 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 697 limelon 4400 eldifpw 4478 ssonuni 4488 onsucuni2 4564 peano2 4595 limom 4614 elrnmpt1 4879 cnveqb 5085 cnveq0 5086 relcoi1 5161 ndmfvg 5547 ffvresb 5680 caovord3d 6045 poxp 6233 nnm0r 6480 nnacl 6481 nnacom 6485 nnaass 6486 nndi 6487 nnmass 6488 nnmsucr 6489 nnmcom 6490 brecop 6625 ecopovtrn 6632 ecopovtrng 6635 elpm2r 6666 map0g 6688 fundmen 6806 mapxpen 6848 phpm 6865 f1vrnfibi 6944 elfir 6972 mulcmpblnq 7367 ordpipqqs 7373 mulcmpblnq0 7443 genpprecll 7513 genppreclu 7514 addcmpblnr 7738 ax1rid 7876 axpre-mulgt0 7886 cnegexlem1 8132 msqge0 8573 mulge0 8576 ltleap 8589 nnmulcl 8940 nnsub 8958 elnn0z 9266 ztri3or0 9295 nneoor 9355 uz11 9550 xltnegi 9835 frec2uzuzd 10402 seq3fveq2 10469 seq3shft2 10473 seq3split 10479 seq3caopr3 10481 seq3id2 10509 seq3homo 10510 m1expcl2 10542 expadd 10562 expmul 10565 faclbnd 10721 hashfzp1 10804 hashfacen 10816 seq3coll 10822 caucvgrelemcau 10989 recan 11118 rexanre 11229 fsumiun 11485 efexp 11690 dvdstr 11835 alzdvds 11860 zob 11896 gcdmultiplez 12022 dvdssq 12032 cncongr2 12104 prmdiveq 12236 pythagtriplem2 12266 pcexp 12309 elrestr 12696 ptex 12713 xpsff1o 12768 dfgrp3me 12970 mulgneg2 13017 mulgnnass 13018 mhmmulg 13024 ringadd2 13210 mulgass2 13235 subrgpropd 13369 lmodprop2d 13438 cnfldmulg 13473 cnfldexp 13474 restopn2 13686 txcn 13778 txlm 13782 isxms2 13955 bj-om 14692 bj-inf2vnlem2 14726 bj-inf2vn 14729 bj-inf2vn2 14730 |
Copyright terms: Public domain | W3C validator |