| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrrid | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| imbitrrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. 2
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 2 | bicomd 141 |
. 2
|
| 4 | 1, 3 | imbitrid 154 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibrcom 157 biimprd 158 nbn2 698 limelon 4445 eldifpw 4523 ssonuni 4535 onsucuni2 4611 peano2 4642 limom 4661 elrnmpt1 4928 cnveqb 5137 cnveq0 5138 relcoi1 5213 ndmfvg 5606 ffvresb 5742 caovord3d 6116 poxp 6317 nnm0r 6564 nnacl 6565 nnacom 6569 nnaass 6570 nndi 6571 nnmass 6572 nnmsucr 6573 nnmcom 6574 brecop 6711 ecopovtrn 6718 ecopovtrng 6721 elpm2r 6752 map0g 6774 fundmen 6897 mapxpen 6944 phpm 6961 f1vrnfibi 7046 elfir 7074 mulcmpblnq 7480 ordpipqqs 7486 mulcmpblnq0 7556 genpprecll 7626 genppreclu 7627 addcmpblnr 7851 ax1rid 7989 axpre-mulgt0 7999 cnegexlem1 8246 msqge0 8688 mulge0 8691 ltleap 8704 nnmulcl 9056 nnsub 9074 elnn0z 9384 ztri3or0 9413 nneoor 9474 uz11 9670 xltnegi 9956 frec2uzuzd 10545 seq3fveq2 10618 seqfveq2g 10620 seq3shft2 10624 seqshft2g 10625 seq3split 10631 seqsplitg 10632 seq3caopr3 10634 seqcaopr3g 10635 seqf1oglem2a 10661 seq3id2 10669 seq3homo 10670 seqhomog 10673 m1expcl2 10704 expadd 10724 expmul 10727 faclbnd 10884 hashfzp1 10967 hashfacen 10979 seq3coll 10985 wrdsymb0 11024 len0nnbi 11026 caucvgrelemcau 11262 recan 11391 rexanre 11502 fsumiun 11759 efexp 11964 dvdstr 12110 alzdvds 12136 zob 12173 bitsinv1 12244 gcdmultiplez 12313 dvdssq 12323 cncongr2 12397 prmdiveq 12529 pythagtriplem2 12560 pcexp 12603 elrestr 13050 ptex 13067 xpsff1o 13152 dfgrp3me 13403 mulgneg2 13463 mulgnnass 13464 mhmmulg 13470 rngpropd 13688 ringadd2 13760 mulgass2 13791 opprrngbg 13811 opprsubrngg 13944 subrngpropd 13949 subrgpropd 13986 rhmpropd 13987 lmodprop2d 14081 cnfldmulg 14309 cnfldexp 14310 restopn2 14626 txcn 14718 txlm 14722 isxms2 14895 rpcxpmul2 15356 gausslemma2dlem0i 15505 bj-om 15835 bj-inf2vnlem2 15869 bj-inf2vn 15872 bj-inf2vn2 15873 |
| Copyright terms: Public domain | W3C validator |