Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biassdc | Unicode version |
Description: Associative law for the
biconditional, for decidable propositions.
The classical version (without the decidability conditions) is an axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805, and, interestingly, was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by Jim Kingdon, 4-May-2018.) |
Ref | Expression |
---|---|
biassdc | DECID DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 830 | . . 3 DECID | |
2 | pm5.501 243 | . . . . . . 7 | |
3 | 2 | bibi1d 232 | . . . . . 6 |
4 | pm5.501 243 | . . . . . 6 | |
5 | 3, 4 | bitr3d 189 | . . . . 5 |
6 | 5 | a1d 22 | . . . 4 DECID DECID |
7 | nbbndc 1389 | . . . . . . . . 9 DECID DECID | |
8 | 7 | imp 123 | . . . . . . . 8 DECID DECID |
9 | 8 | adantl 275 | . . . . . . 7 DECID DECID |
10 | nbn2 692 | . . . . . . . . 9 | |
11 | 10 | bibi1d 232 | . . . . . . . 8 |
12 | 11 | adantr 274 | . . . . . . 7 DECID DECID |
13 | 9, 12 | bitr3d 189 | . . . . . 6 DECID DECID |
14 | nbn2 692 | . . . . . . 7 | |
15 | 14 | adantr 274 | . . . . . 6 DECID DECID |
16 | 13, 15 | bitr3d 189 | . . . . 5 DECID DECID |
17 | 16 | ex 114 | . . . 4 DECID DECID |
18 | 6, 17 | jaoi 711 | . . 3 DECID DECID |
19 | 1, 18 | sylbi 120 | . 2 DECID DECID DECID |
20 | 19 | expd 256 | 1 DECID DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: bilukdc 1391 |
Copyright terms: Public domain | W3C validator |