ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1aidc Unicode version

Theorem necon1aidc 2396
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon1aidc.1  |-  (DECID  ph  ->  ( -.  ph  ->  A  =  B ) )
Assertion
Ref Expression
necon1aidc  |-  (DECID  ph  ->  ( A  =/=  B  ->  ph ) )

Proof of Theorem necon1aidc
StepHypRef Expression
1 df-ne 2346 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon1aidc.1 . . 3  |-  (DECID  ph  ->  ( -.  ph  ->  A  =  B ) )
3 con1dc 856 . . 3  |-  (DECID  ph  ->  ( ( -.  ph  ->  A  =  B )  -> 
( -.  A  =  B  ->  ph ) ) )
42, 3mpd 13 . 2  |-  (DECID  ph  ->  ( -.  A  =  B  ->  ph ) )
51, 4biimtrid 152 1  |-  (DECID  ph  ->  ( A  =/=  B  ->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 834    = wceq 1353    =/= wne 2345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-ne 2346
This theorem is referenced by:  necon1idc  2398  lgsne0  14008
  Copyright terms: Public domain W3C validator