ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsne0 Unicode version

Theorem lgsne0 13539
Description: The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsne0  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem lgsne0
Dummy variables  k  n  x  y  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsqcl 10521 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
21adantr 274 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A ^ 2 )  e.  ZZ )
3 1z 9213 . . . . . . . 8  |-  1  e.  ZZ
4 zdceq 9262 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
52, 3, 4sylancl 410 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
6 iffalse 3527 . . . . . . . . 9  |-  ( -.  ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
76a1i 9 . . . . . . . 8  |-  (DECID  ( A ^ 2 )  =  1  ->  ( -.  ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 ) )
87necon1aidc 2386 . . . . . . 7  |-  (DECID  ( A ^ 2 )  =  1  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =/=  0  -> 
( A ^ 2 )  =  1 ) )
95, 8syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  =/=  0  ->  ( A ^ 2 )  =  1 ) )
10 iftrue 3524 . . . . . . 7  |-  ( ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  1 )
11 1ne0 8921 . . . . . . . 8  |-  1  =/=  0
1211a1i 9 . . . . . . 7  |-  ( ( A ^ 2 )  =  1  ->  1  =/=  0 )
1310, 12eqnetrd 2359 . . . . . 6  |-  ( ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =/=  0 )
149, 13impbid1 141 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  =/=  0  <->  ( A ^
2 )  =  1 ) )
1514adantr 274 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =/=  0  <->  ( A ^ 2 )  =  1 ) )
16 zre 9191 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  RR )
1716ad2antrr 480 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  A  e.  RR )
18 absresq 11016 . . . . . 6  |-  ( A  e.  RR  ->  (
( abs `  A
) ^ 2 )  =  ( A ^
2 ) )
1917, 18syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( abs `  A ) ^
2 )  =  ( A ^ 2 ) )
20 sq1 10544 . . . . . 6  |-  ( 1 ^ 2 )  =  1
2120a1i 9 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( 1 ^ 2 )  =  1 )
2219, 21eqeq12d 2180 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( (
( abs `  A
) ^ 2 )  =  ( 1 ^ 2 )  <->  ( A ^ 2 )  =  1 ) )
2317recnd 7923 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  A  e.  CC )
2423abscld 11119 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( abs `  A )  e.  RR )
2523absge0d 11122 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  0  <_  ( abs `  A ) )
26 1re 7894 . . . . . 6  |-  1  e.  RR
27 0le1 8375 . . . . . 6  |-  0  <_  1
28 sq11 10523 . . . . . 6  |-  ( ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( abs `  A ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( abs `  A
)  =  1 ) )
2926, 27, 28mpanr12 436 . . . . 5  |-  ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  ->  (
( ( abs `  A
) ^ 2 )  =  ( 1 ^ 2 )  <->  ( abs `  A )  =  1 ) )
3024, 25, 29syl2anc 409 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( (
( abs `  A
) ^ 2 )  =  ( 1 ^ 2 )  <->  ( abs `  A )  =  1 ) )
3115, 22, 303bitr2d 215 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =/=  0  <->  ( abs `  A )  =  1 ) )
32 oveq2 5849 . . . . 5  |-  ( N  =  0  ->  ( A  /L N )  =  ( A  /L 0 ) )
33 lgs0 13514 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
3433adantr 274 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L 0 )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
3532, 34sylan9eqr 2220 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( A  /L N )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
3635neeq1d 2353 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( A  /L N )  =/=  0  <->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  =/=  0 ) )
37 oveq2 5849 . . . . 5  |-  ( N  =  0  ->  ( A  gcd  N )  =  ( A  gcd  0
) )
38 gcdid0 11909 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
3938adantr 274 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  gcd  0
)  =  ( abs `  A ) )
4037, 39sylan9eqr 2220 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( A  gcd  N )  =  ( abs `  A ) )
4140eqeq1d 2174 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( A  gcd  N )  =  1  <->  ( abs `  A
)  =  1 ) )
4231, 36, 413bitr4d 219 . 2  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( ( A  /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
43 lgscl 13515 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
4443adantr 274 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( A  /L N )  e.  ZZ )
45 0z 9198 . . . 4  |-  0  e.  ZZ
46 zapne 9261 . . . 4  |-  ( ( ( A  /L
N )  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  /L N ) #  0  <->  ( A  /L N )  =/=  0 ) )
4744, 45, 46sylancl 410 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( ( A  /L N ) #  0  <->  ( A  /L N )  =/=  0 ) )
48 eqid 2165 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
4948lgsval4 13521 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
5049breq1d 3991 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  /L
N ) #  0  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) #  0 ) )
51 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  ( N  <  0  /\  A  <  0 ) )  -> 
( N  <  0  /\  A  <  0
) )
5251iftrued 3526 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  ( N  <  0  /\  A  <  0 ) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  -u 1 )
53 neg1ne0 8960 . . . . . . . . . . . 12  |-  -u 1  =/=  0
5453a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  ( N  <  0  /\  A  <  0 ) )  ->  -u 1  =/=  0 )
5552, 54eqnetrd 2359 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  ( N  <  0  /\  A  <  0 ) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0 )
56 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( N  <  0  /\  A  <  0 ) )  ->  -.  ( N  <  0  /\  A  <  0
) )
5756iffalsed 3529 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( N  <  0  /\  A  <  0 ) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  1 )
5811a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( N  <  0  /\  A  <  0 ) )  -> 
1  =/=  0 )
5957, 58eqnetrd 2359 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( N  <  0  /\  A  <  0 ) )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0 )
60 simpr 109 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
61 zdclt 9264 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
6260, 45, 61sylancl 410 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  0 )
63 simpl 108 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  A  e.  ZZ )
64 zdclt 9264 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
6563, 45, 64sylancl 410 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  A  <  0 )
66 dcan2 924 . . . . . . . . . . . 12  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
6762, 65, 66sylc 62 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( N  <  0  /\  A  <  0 ) )
68 exmiddc 826 . . . . . . . . . . 11  |-  (DECID  ( N  <  0  /\  A  <  0 )  ->  (
( N  <  0  /\  A  <  0
)  \/  -.  ( N  <  0  /\  A  <  0 ) ) )
6967, 68syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  <  0  /\  A  <  0 )  \/  -.  ( N  <  0  /\  A  <  0
) ) )
7055, 59, 69mpjaodan 788 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0 )
7170biantrurd 303 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0 ) ) )
72713adant3 1007 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =/=  0  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0 ) ) )
73 neg1z 9219 . . . . . . . . . . . . 13  |-  -u 1  e.  ZZ
7473a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> 
-u 1  e.  ZZ )
75 1zzd 9214 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
7674, 75, 67ifcldcd 3554 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
77763adant3 1007 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
7877zcnd 9310 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
79 nnuz 9497 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
80 1zzd 9214 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  ZZ )
8148lgsfcl3 13522 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
8281ffvelrnda 5619 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
83 zmulcl 9240 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  x  e.  ZZ )  ->  ( k  x.  x
)  e.  ZZ )
8483adantl 275 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( k  e.  ZZ  /\  x  e.  ZZ ) )  ->  ( k  x.  x )  e.  ZZ )
8579, 80, 82, 84seqf 10392 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
86 nnabscl 11038 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
87863adant1 1005 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  N )  e.  NN )
8885, 87ffvelrnd 5620 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
8988zcnd 9310 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
9078, 89mulap0bd 8550 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) #  0  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) #  0 )  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) #  0 ) )
91 zapne 9261 . . . . . . . . . 10  |-  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  ZZ  /\  0  e.  ZZ )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) #  0  <->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0 ) )
9277, 45, 91sylancl 410 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) #  0  <->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0 ) )
93 zapne 9261 . . . . . . . . . 10  |-  ( ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ  /\  0  e.  ZZ )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) #  0  <->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0 ) )
9488, 45, 93sylancl 410 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) #  0  <->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0 ) )
9592, 94anbi12d 465 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) #  0  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) #  0 )  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =/=  0  /\  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0 ) ) )
9677, 88zmulcld 9315 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  e.  ZZ )
97 zapne 9261 . . . . . . . . 9  |-  ( ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) #  0  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =/=  0
) )
9896, 45, 97sylancl 410 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) #  0  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =/=  0
) )
9990, 95, 983bitr3d 217 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  =/=  0  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0 )  <->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =/=  0
) )
10072, 99bitr2d 188 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =/=  0  <->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =/=  0
) )
101100, 98, 943bitr4d 219 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) #  0  <->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) #  0 ) )
102 gcd2n0cl 11898 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  gcd  N )  e.  NN )
103102nnzd 9308 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  gcd  N )  e.  ZZ )
104 zdceq 9262 . . . . . . . . 9  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  gcd  N )  =  1 )
105103, 3, 104sylancl 410 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  gcd  N
)  =  1 )
106 eluz2b3 9538 . . . . . . . . . . . . 13  |-  ( ( A  gcd  N )  e.  ( ZZ>= `  2
)  <->  ( ( A  gcd  N )  e.  NN  /\  ( A  gcd  N )  =/=  1 ) )
107 exprmfct 12066 . . . . . . . . . . . . 13  |-  ( ( A  gcd  N )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  ( A  gcd  N ) )
108106, 107sylbir 134 . . . . . . . . . . . 12  |-  ( ( ( A  gcd  N
)  e.  NN  /\  ( A  gcd  N )  =/=  1 )  ->  E. p  e.  Prime  p 
||  ( A  gcd  N ) )
109 mulcl 7876 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
110109adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  ->  ( k  x.  x )  e.  CC )
11181ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
112 elnnuz 9498 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
113112biimpri 132 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
114113adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
k  e.  NN )
115111, 114ffvelrnd 5620 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
116115zcnd 9310 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
117 mul02 8281 . . . . . . . . . . . . . . 15  |-  ( k  e.  CC  ->  (
0  x.  k )  =  0 )
118117adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  k  e.  CC )  ->  ( 0  x.  k
)  =  0 )
119 mul01 8283 . . . . . . . . . . . . . . 15  |-  ( k  e.  CC  ->  (
k  x.  0 )  =  0 )
120119adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  k  e.  CC )  ->  ( k  x.  0 )  =  0 )
121 simprr 522 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  ||  ( A  gcd  N ) )
122 prmz 12039 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  Prime  ->  p  e.  ZZ )
123122ad2antrl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  e.  ZZ )
124 simpl1 990 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  A  e.  ZZ )
125 simpl2 991 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  N  e.  ZZ )
126 dvdsgcdb 11942 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  N  e.  ZZ )  ->  (
( p  ||  A  /\  p  ||  N )  <-> 
p  ||  ( A  gcd  N ) ) )
127123, 124, 125, 126syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( (
p  ||  A  /\  p  ||  N )  <->  p  ||  ( A  gcd  N ) ) )
128121, 127mpbird 166 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  ||  A  /\  p  ||  N ) )
129128simprd 113 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  ||  N
)
130 dvdsabsb 11746 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  ->  ( p  ||  N  <->  p 
||  ( abs `  N
) ) )
131123, 125, 130syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  ||  N  <->  p  ||  ( abs `  N ) ) )
132129, 131mpbid 146 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  ||  ( abs `  N ) )
13387adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( abs `  N )  e.  NN )
134 dvdsle 11778 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  ZZ  /\  ( abs `  N )  e.  NN )  -> 
( p  ||  ( abs `  N )  ->  p  <_  ( abs `  N
) ) )
135123, 133, 134syl2anc 409 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  ||  ( abs `  N
)  ->  p  <_  ( abs `  N ) ) )
136132, 135mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  <_  ( abs `  N ) )
137 prmnn 12038 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e.  NN )
138137ad2antrl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  e.  NN )
139138, 79eleqtrdi 2258 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  e.  ( ZZ>= `  1 )
)
140133nnzd 9308 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( abs `  N )  e.  ZZ )
141 elfz5 9948 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  ( ZZ>= ` 
1 )  /\  ( abs `  N )  e.  ZZ )  ->  (
p  e.  ( 1 ... ( abs `  N
) )  <->  p  <_  ( abs `  N ) ) )
142139, 140, 141syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  e.  ( 1 ... ( abs `  N ) )  <-> 
p  <_  ( abs `  N ) ) )
143136, 142mpbird 166 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  e.  ( 1 ... ( abs `  N ) ) )
144 eleq1w 2226 . . . . . . . . . . . . . . . . 17  |-  ( n  =  p  ->  (
n  e.  Prime  <->  p  e.  Prime ) )
145 oveq2 5849 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  p  ->  ( A  /L n )  =  ( A  /L p ) )
146 oveq1 5848 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  p  ->  (
n  pCnt  N )  =  ( p  pCnt  N ) )
147145, 146oveq12d 5859 . . . . . . . . . . . . . . . . 17  |-  ( n  =  p  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L p ) ^ ( p 
pCnt  N ) ) )
148144, 147ifbieq1d 3541 . . . . . . . . . . . . . . . 16  |-  ( n  =  p  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( p  e.  Prime ,  ( ( A  /L
p ) ^ (
p  pCnt  N )
) ,  1 ) )
149 simprl 521 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  e.  Prime )
150149iftrued 3526 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  if (
p  e.  Prime ,  ( ( A  /L
p ) ^ (
p  pCnt  N )
) ,  1 )  =  ( ( A  /L p ) ^ ( p  pCnt  N ) ) )
151 lgscl 13515 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  p  e.  ZZ )  ->  ( A  /L
p )  e.  ZZ )
152124, 123, 151syl2anc 409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( A  /L p )  e.  ZZ )
153 simpl3 992 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  N  =/=  0 )
154 pczcl 12226 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( p  pCnt  N
)  e.  NN0 )
155149, 125, 153, 154syl12anc 1226 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  pCnt  N )  e.  NN0 )
156 zexpcl 10466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  /L
p )  e.  ZZ  /\  ( p  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L p ) ^
( p  pCnt  N
) )  e.  ZZ )
157152, 155, 156syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( ( A  /L p ) ^ ( p  pCnt  N ) )  e.  ZZ )
158150, 157eqeltrd 2242 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  if (
p  e.  Prime ,  ( ( A  /L
p ) ^ (
p  pCnt  N )
) ,  1 )  e.  ZZ )
15948, 148, 138, 158fvmptd3 5578 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  p
)  =  if ( p  e.  Prime ,  ( ( A  /L
p ) ^ (
p  pCnt  N )
) ,  1 ) )
160 oveq2 5849 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  2  ->  ( A  /L p )  =  ( A  /L 2 ) )
161 lgs2 13518 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ZZ  ->  ( A  /L 2 )  =  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
162124, 161syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( A  /L 2 )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
163160, 162sylan9eqr 2220 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =  2 )  ->  ( A  /L p )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
164 simpr 109 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =  2 )  ->  p  =  2 )
165128simpld 111 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  p  ||  A
)
166165adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =  2 )  ->  p  ||  A
)
167164, 166eqbrtrrd 4005 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =  2 )  ->  2  ||  A
)
168167iftrued 3526 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =  2 )  ->  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
169163, 168eqtrd 2198 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =  2 )  ->  ( A  /L p )  =  0 )
170 simpll1 1026 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  A  e.  ZZ )
171149adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  p  e.  Prime )
172 simpr 109 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  p  =/=  2 )
173 eldifsn 3702 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  ( Prime  \  {
2 } )  <->  ( p  e.  Prime  /\  p  =/=  2 ) )
174171, 172, 173sylanbrc 414 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  p  e.  ( Prime  \  { 2 } ) )
175 lgsval3 13519 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ZZ  /\  p  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L p )  =  ( ( ( ( A ^ ( ( p  -  1 )  /  2 ) )  +  1 )  mod  p )  -  1 ) )
176170, 174, 175syl2anc 409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( A  /L
p )  =  ( ( ( ( A ^ ( ( p  -  1 )  / 
2 ) )  +  1 )  mod  p
)  -  1 ) )
177 oddprm 12187 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( p  e.  ( Prime  \  {
2 } )  -> 
( ( p  - 
1 )  /  2
)  e.  NN )
178174, 177syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( p  - 
1 )  /  2
)  e.  NN )
179178nnnn0d 9163 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( p  - 
1 )  /  2
)  e.  NN0 )
180 zexpcl 10466 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  ZZ  /\  ( ( p  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( p  -  1 )  /  2 ) )  e.  ZZ )
181170, 179, 180syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( A ^ (
( p  -  1 )  /  2 ) )  e.  ZZ )
182 zq 9560 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A ^ ( ( p  -  1 )  /  2 ) )  e.  ZZ  ->  ( A ^ ( ( p  -  1 )  / 
2 ) )  e.  QQ )
183181, 182syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( A ^ (
( p  -  1 )  /  2 ) )  e.  QQ )
184 zq 9560 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
18545, 184mp1i 10 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
0  e.  QQ )
186 1nn 8864 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  e.  NN
187 nnq 9567 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1  e.  NN  ->  1  e.  QQ )
188186, 187mp1i 10 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
1  e.  QQ )
189171, 137syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  p  e.  NN )
190 nnq 9567 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  NN  ->  p  e.  QQ )
191189, 190syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  p  e.  QQ )
192 nngt0 8878 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  NN  ->  0  <  p )
193189, 192syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
0  <  p )
194 0zd 9199 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
0  e.  ZZ )
195165adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  p  ||  A )
196 dvdsval3 11727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( p  e.  NN  /\  A  e.  ZZ )  ->  ( p  ||  A  <->  ( A  mod  p )  =  0 ) )
197189, 170, 196syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( p  ||  A  <->  ( A  mod  p )  =  0 ) )
198195, 197mpbid 146 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( A  mod  p
)  =  0 )
199 q0mod 10286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( p  e.  QQ  /\  0  <  p )  -> 
( 0  mod  p
)  =  0 )
200190, 192, 199syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( p  e.  NN  ->  (
0  mod  p )  =  0 )
201189, 200syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( 0  mod  p
)  =  0 )
202198, 201eqtr4d 2201 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( A  mod  p
)  =  ( 0  mod  p ) )
203170, 194, 179, 191, 193, 202modqexp 10577 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( A ^
( ( p  - 
1 )  /  2
) )  mod  p
)  =  ( ( 0 ^ ( ( p  -  1 )  /  2 ) )  mod  p ) )
2041780expd 10600 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( 0 ^ (
( p  -  1 )  /  2 ) )  =  0 )
205204oveq1d 5856 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( 0 ^ ( ( p  - 
1 )  /  2
) )  mod  p
)  =  ( 0  mod  p ) )
206203, 205eqtrd 2198 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( A ^
( ( p  - 
1 )  /  2
) )  mod  p
)  =  ( 0  mod  p ) )
207183, 185, 188, 191, 193, 206modqadd1 10292 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( ( A ^ ( ( p  -  1 )  / 
2 ) )  +  1 )  mod  p
)  =  ( ( 0  +  1 )  mod  p ) )
208 0p1e1 8967 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0  +  1 )  =  1
209208oveq1i 5851 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  +  1 )  mod  p )  =  ( 1  mod  p
)
210207, 209eqtrdi 2214 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( ( A ^ ( ( p  -  1 )  / 
2 ) )  +  1 )  mod  p
)  =  ( 1  mod  p ) )
211 prmuz2 12059 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
212171, 211syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  ->  p  e.  ( ZZ>= ` 
2 ) )
213 eluzelz 9471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  ZZ )
214 zq 9560 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  ZZ  ->  p  e.  QQ )
215213, 214syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  QQ )
216 eluz2gt1 9536 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
217 q1mod 10287 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  QQ  /\  1  <  p )  -> 
( 1  mod  p
)  =  1 )
218215, 216, 217syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  ( ZZ>= `  2
)  ->  ( 1  mod  p )  =  1 )
219212, 218syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( 1  mod  p
)  =  1 )
220210, 219eqtrd 2198 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( ( A ^ ( ( p  -  1 )  / 
2 ) )  +  1 )  mod  p
)  =  1 )
221220oveq1d 5856 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( ( ( A ^ ( ( p  -  1 )  /  2 ) )  +  1 )  mod  p )  -  1 )  =  ( 1  -  1 ) )
222 1m1e0 8922 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  -  1 )  =  0
223221, 222eqtrdi 2214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( ( ( ( A ^ ( ( p  -  1 )  /  2 ) )  +  1 )  mod  p )  -  1 )  =  0 )
224176, 223eqtrd 2198 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( A  gcd  N
) ) )  /\  p  =/=  2 )  -> 
( A  /L
p )  =  0 )
225 2z 9215 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  ZZ
226 zdceq 9262 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  ZZ  /\  2  e.  ZZ )  -> DECID  p  =  2 )
227123, 225, 226sylancl 410 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  -> DECID  p  =  2
)
228 dcne 2346 . . . . . . . . . . . . . . . . . . 19  |-  (DECID  p  =  2  <->  ( p  =  2  \/  p  =/=  2 ) )
229227, 228sylib 121 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  =  2  \/  p  =/=  2 ) )
230169, 224, 229mpjaodan 788 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( A  /L p )  =  0 )
231230oveq1d 5856 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( ( A  /L p ) ^ ( p  pCnt  N ) )  =  ( 0 ^ ( p 
pCnt  N ) ) )
232 zq 9560 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ZZ  ->  N  e.  QQ )
233125, 232syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  N  e.  QQ )
234 pcabs 12253 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  N  e.  QQ )  ->  (
p  pCnt  ( abs `  N ) )  =  ( p  pCnt  N
) )
235149, 233, 234syl2anc 409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  pCnt  ( abs `  N
) )  =  ( p  pCnt  N )
)
236 pcelnn 12248 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  ( abs `  N )  e.  NN )  ->  (
( p  pCnt  ( abs `  N ) )  e.  NN  <->  p  ||  ( abs `  N ) ) )
237149, 133, 236syl2anc 409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( (
p  pCnt  ( abs `  N ) )  e.  NN  <->  p  ||  ( abs `  N ) ) )
238132, 237mpbird 166 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  pCnt  ( abs `  N
) )  e.  NN )
239235, 238eqeltrrd 2243 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( p  pCnt  N )  e.  NN )
2402390expd 10600 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( 0 ^ ( p  pCnt  N ) )  =  0 )
241231, 240eqtrd 2198 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( ( A  /L p ) ^ ( p  pCnt  N ) )  =  0 )
242159, 150, 2413eqtrd 2202 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  ( (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  p
)  =  0 )
243110, 116, 118, 120, 143, 242seq3z 10442 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( p  e.  Prime  /\  p  ||  ( A  gcd  N ) ) )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  0 )
244243rexlimdvaa 2583 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( E. p  e.  Prime  p 
||  ( A  gcd  N )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  0 ) )
245108, 244syl5 32 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( ( A  gcd  N )  e.  NN  /\  ( A  gcd  N )  =/=  1 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =  0 ) )
246102, 245mpand 426 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  gcd  N
)  =/=  1  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =  0 ) )
247246a1d 22 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (DECID  ( A  gcd  N )  =  1  ->  ( ( A  gcd  N )  =/=  1  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =  0 ) ) )
248247necon1ddc 2413 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (DECID  ( A  gcd  N )  =  1  ->  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  =/=  0  -> 
( A  gcd  N
)  =  1 ) ) )
249105, 248mpd 13 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =/=  0  ->  ( A  gcd  N
)  =  1 ) )
25094, 249sylbid 149 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) #  0  -> 
( A  gcd  N
)  =  1 ) )
251 1zzd 9214 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  -> 
1  e.  ZZ )
252 eleq1w 2226 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
253 oveq2 5849 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
254 oveq1 5848 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
255253, 254oveq12d 5859 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) )
256252, 255ifbieq1d 3541 . . . . . . . . . . . 12  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
257 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  ->  k  e.  NN )
258 simp1 987 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
259258ad3antrrr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  A  e.  ZZ )
260 prmz 12039 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Prime  ->  k  e.  ZZ )
261260adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  k  e.  ZZ )
262 lgscl 13515 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
263259, 261, 262syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  ZZ )
264 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  k  e.  Prime )
265 simp2 988 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  ZZ )
266265ad3antrrr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  N  e.  ZZ )
267 simp3 989 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  =/=  0 )
268267ad3antrrr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  N  =/=  0 )
269 pczcl 12226 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
270264, 266, 268, 269syl12anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  (
k  pCnt  N )  e.  NN0 )
271 zexpcl 10466 . . . . . . . . . . . . . 14  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
272263, 270, 271syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  (
( A  /L
k ) ^ (
k  pCnt  N )
)  e.  ZZ )
273 1zzd 9214 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  -.  k  e.  Prime )  -> 
1  e.  ZZ )
274 prmdc 12058 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
275274adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  -> DECID  k  e.  Prime )
276272, 273, 275ifcldadc 3548 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
27748, 256, 257, 276fvmptd3 5578 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
)  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
278 simpll1 1026 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  A  e.  ZZ )
279260adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  k  e.  ZZ )
280278, 279, 262syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  ZZ )
281280zcnd 9310 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  ( A  /L k )  e.  CC )
282281adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  ( A  /L k )  e.  CC )
283 oveq2 5849 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  2  ->  ( A  /L k )  =  ( A  /L 2 ) )
284278adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  A  e.  ZZ )
285284, 161syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  ( A  /L 2 )  =  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
286283, 285sylan9eqr 2220 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =  2 )  -> 
( A  /L
k )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
287 nprmdvds1 12068 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( k  e.  Prime  ->  -.  k  ||  1 )
288287adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  -.  k  ||  1 )
289 simpll2 1027 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  N  e.  ZZ )
290 dvdsgcdb 11942 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( k  e.  ZZ  /\  A  e.  ZZ  /\  N  e.  ZZ )  ->  (
( k  ||  A  /\  k  ||  N )  <-> 
k  ||  ( A  gcd  N ) ) )
291279, 278, 289, 290syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
( k  ||  A  /\  k  ||  N )  <-> 
k  ||  ( A  gcd  N ) ) )
292 simplr 520 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  ( A  gcd  N )  =  1 )
293292breq2d 3993 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  ||  ( A  gcd  N )  <->  k  ||  1 ) )
294291, 293bitrd 187 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
( k  ||  A  /\  k  ||  N )  <-> 
k  ||  1 ) )
295288, 294mtbird 663 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  -.  ( k  ||  A  /\  k  ||  N ) )
296 imnan 680 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( k  ||  A  ->  -.  k  ||  N )  <->  -.  ( k  ||  A  /\  k  ||  N ) )
297295, 296sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  ||  A  ->  -.  k  ||  N ) )
298297con2d 614 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  ||  N  ->  -.  k  ||  A ) )
299298imp 123 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  -.  k  ||  A )
300 breq1 3984 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  2  ->  (
k  ||  A  <->  2  ||  A ) )
301300notbid 657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  2  ->  ( -.  k  ||  A  <->  -.  2  ||  A ) )
302299, 301syl5ibcom 154 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  (
k  =  2  ->  -.  2  ||  A ) )
303302imp 123 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =  2 )  ->  -.  2  ||  A )
304303iffalsed 3529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
305286, 304eqtrd 2198 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =  2 )  -> 
( A  /L
k )  =  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
306 simpr 109 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  ( A  mod  8 )  e.  {
1 ,  7 } )
307306iftrued 3526 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  =  1 )
30811a1i 9 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  1  =/=  0
)
309307, 308eqnetrd 2359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ZZ  /\  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  =/=  0 )
310 simpr 109 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  ZZ  /\  -.  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  -.  ( A  mod  8 )  e.  {
1 ,  7 } )
311310iffalsed 3529 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  -.  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  = 
-u 1 )
31253a1i 9 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  ZZ  /\  -.  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  -u 1  =/=  0
)
313311, 312eqnetrd 2359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  ZZ  /\  -.  ( A  mod  8
)  e.  { 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  =/=  0 )
314 8nn 9020 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  8  e.  NN
315 zmodcl 10275 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  ZZ  /\  8  e.  NN )  ->  ( A  mod  8
)  e.  NN0 )
316314, 315mpan2 422 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e. 
NN0 )
317316nn0zd 9307 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  e.  ZZ  ->  ( A  mod  8 )  e.  ZZ )
318 zdceq 9262 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
319317, 3, 318sylancl 410 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  1 )
320 7nn 9019 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  7  e.  NN
321320nnzi 9208 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  7  e.  ZZ
322 zdceq 9262 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
323317, 321, 322sylancl 410 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  =  7 )
324 dcor 925 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
325319, 323, 324sylc 62 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  e.  ZZ  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
326 elprg 3595 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
327316, 326syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
328327dcbid 828 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  e.  ZZ  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
329325, 328mpbird 166 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
330 exmiddc 826 . . . . . . . . . . . . . . . . . . . . . 22  |-  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  ->  ( ( A  mod  8 )  e. 
{ 1 ,  7 }  \/  -.  ( A  mod  8 )  e. 
{ 1 ,  7 } ) )
331329, 330syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  ZZ  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  \/  -.  ( A  mod  8
)  e.  { 1 ,  7 } ) )
332309, 313, 331mpjaodan 788 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  ZZ  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =/=  0
)
333258, 332syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =/=  0
)
334333ad4antr 486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =  2 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =/=  0
)
335305, 334eqnetrd 2359 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =  2 )  -> 
( A  /L
k )  =/=  0
)
336 simpr 109 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  k  e.  Prime )
337336ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  k  e.  Prime )
338337, 287syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  -.  k  ||  1 )
339 simplr 520 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  k  ||  N )
340337, 260syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  k  e.  ZZ )
341284adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  A  e.  ZZ )
342 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  k  =/=  2 )
343 eldifsn 3702 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( k  e.  ( Prime  \  {
2 } )  <->  ( k  e.  Prime  /\  k  =/=  2 ) )
344337, 342, 343sylanbrc 414 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  k  e.  ( Prime  \  { 2 } ) )
345 oddprm 12187 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( k  e.  ( Prime  \  {
2 } )  -> 
( ( k  - 
1 )  /  2
)  e.  NN )
346344, 345syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( k  -  1 )  /  2 )  e.  NN )
347346nnnn0d 9163 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( k  -  1 )  /  2 )  e.  NN0 )
348 zexpcl 10466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  ZZ  /\  ( ( k  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( k  -  1 )  /  2 ) )  e.  ZZ )
349341, 347, 348syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( A ^ ( ( k  -  1 )  / 
2 ) )  e.  ZZ )
350289ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  N  e.  ZZ )
351 dvdsgcd 11941 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  e.  ZZ  /\  ( A ^ ( ( k  -  1 )  /  2 ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( k  ||  ( A ^ ( ( k  -  1 )  / 
2 ) )  /\  k  ||  N )  -> 
k  ||  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  gcd 
N ) ) )
352340, 349, 350, 351syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( k  ||  ( A ^ ( ( k  -  1 )  / 
2 ) )  /\  k  ||  N )  -> 
k  ||  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  gcd 
N ) ) )
353339, 352mpan2d 425 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
k  ||  ( A ^ ( ( k  -  1 )  / 
2 ) )  -> 
k  ||  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  gcd 
N ) ) )
354341zcnd 9310 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  A  e.  CC )
355354, 347absexpd 11130 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( abs `  ( A ^
( ( k  - 
1 )  /  2
) ) )  =  ( ( abs `  A
) ^ ( ( k  -  1 )  /  2 ) ) )
356355oveq1d 5856 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( abs `  ( A ^ ( ( k  -  1 )  / 
2 ) ) )  gcd  ( abs `  N
) )  =  ( ( ( abs `  A
) ^ ( ( k  -  1 )  /  2 ) )  gcd  ( abs `  N
) ) )
357 gcdabs 11917 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A ^ (
( k  -  1 )  /  2 ) )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A ^ ( ( k  -  1 )  / 
2 ) ) )  gcd  ( abs `  N
) )  =  ( ( A ^ (
( k  -  1 )  /  2 ) )  gcd  N ) )
358349, 350, 357syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( abs `  ( A ^ ( ( k  -  1 )  / 
2 ) ) )  gcd  ( abs `  N
) )  =  ( ( A ^ (
( k  -  1 )  /  2 ) )  gcd  N ) )
359 gcdabs 11917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  A
)  gcd  ( abs `  N ) )  =  ( A  gcd  N
) )
360341, 350, 359syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( abs `  A
)  gcd  ( abs `  N ) )  =  ( A  gcd  N
) )
361292ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( A  gcd  N )  =  1 )
362360, 361eqtrd 2198 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( abs `  A
)  gcd  ( abs `  N ) )  =  1 )
363299adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  -.  k  ||  A )
364 dvds0 11742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( k  e.  ZZ  ->  k  ||  0 )
365340, 364syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  k  ||  0 )
366 breq2 3985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A  =  0  ->  (
k  ||  A  <->  k  ||  0 ) )
367365, 366syl5ibrcom 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( A  =  0  ->  k 
||  A ) )
368367necon3bd 2378 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( -.  k  ||  A  ->  A  =/=  0 ) )
369363, 368mpd 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  A  =/=  0 )
370 nnabscl 11038 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  NN )
371341, 369, 370syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( abs `  A )  e.  NN )
372 simpll3 1028 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  N  =/=  0 )
373289, 372, 86syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  ( abs `  N )  e.  NN )
374373ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( abs `  N )  e.  NN )
375 rplpwr 11956 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( abs `  A
)  e.  NN  /\  ( abs `  N )  e.  NN  /\  (
( k  -  1 )  /  2 )  e.  NN )  -> 
( ( ( abs `  A )  gcd  ( abs `  N ) )  =  1  ->  (
( ( abs `  A
) ^ ( ( k  -  1 )  /  2 ) )  gcd  ( abs `  N
) )  =  1 ) )
376371, 374, 346, 375syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( ( abs `  A
)  gcd  ( abs `  N ) )  =  1  ->  ( (
( abs `  A
) ^ ( ( k  -  1 )  /  2 ) )  gcd  ( abs `  N
) )  =  1 ) )
377362, 376mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( ( abs `  A
) ^ ( ( k  -  1 )  /  2 ) )  gcd  ( abs `  N
) )  =  1 )
378356, 358, 3773eqtr3d 2206 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( A ^ (
( k  -  1 )  /  2 ) )  gcd  N )  =  1 )
379378breq2d 3993 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
k  ||  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  gcd 
N )  <->  k  ||  1 ) )
380353, 379sylibd 148 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
k  ||  ( A ^ ( ( k  -  1 )  / 
2 ) )  -> 
k  ||  1 ) )
381338, 380mtod 653 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  -.  k  ||  ( A ^
( ( k  - 
1 )  /  2
) ) )
382 prmnn 12038 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  Prime  ->  k  e.  NN )
383382adantl 275 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  k  e.  NN )
384383ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  k  e.  NN )
385 dvdsval3 11727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  e.  NN  /\  ( A ^ ( ( k  -  1 )  /  2 ) )  e.  ZZ )  -> 
( k  ||  ( A ^ ( ( k  -  1 )  / 
2 ) )  <->  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  mod  k )  =  0 ) )
386384, 349, 385syl2anc 409 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
k  ||  ( A ^ ( ( k  -  1 )  / 
2 ) )  <->  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  mod  k )  =  0 ) )
387386necon3bbid 2375 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( -.  k  ||  ( A ^ ( ( k  -  1 )  / 
2 ) )  <->  ( ( A ^ ( ( k  -  1 )  / 
2 ) )  mod  k )  =/=  0
) )
388381, 387mpbid 146 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( A ^ (
( k  -  1 )  /  2 ) )  mod  k )  =/=  0 )
389 lgsvalmod 13520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  ZZ  /\  k  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L k )  mod  k )  =  ( ( A ^
( ( k  - 
1 )  /  2
) )  mod  k
) )
390341, 344, 389syl2anc 409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( A  /L
k )  mod  k
)  =  ( ( A ^ ( ( k  -  1 )  /  2 ) )  mod  k ) )
391 nnq 9567 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  ->  k  e.  QQ )
392 nngt0 8878 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  ->  0  <  k )
393 q0mod 10286 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  QQ  /\  0  <  k )  -> 
( 0  mod  k
)  =  0 )
394391, 392, 393syl2anc 409 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN  ->  (
0  mod  k )  =  0 )
395384, 394syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
0  mod  k )  =  0 )
396388, 390, 3953netr4d 2368 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  (
( A  /L
k )  mod  k
)  =/=  ( 0  mod  k ) )
397 oveq1 5848 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  /L k )  =  0  -> 
( ( A  /L k )  mod  k )  =  ( 0  mod  k ) )
398397necon3i 2383 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  /L
k )  mod  k
)  =/=  ( 0  mod  k )  -> 
( A  /L
k )  =/=  0
)
399396, 398syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  /\  k  =/=  2 )  ->  ( A  /L k )  =/=  0 )
400279adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  k  e.  ZZ )
401 zdceq 9262 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ZZ  /\  2  e.  ZZ )  -> DECID  k  =  2 )
402400, 225, 401sylancl 410 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  -> DECID  k  =  2
)
403 dcne 2346 . . . . . . . . . . . . . . . . . 18  |-  (DECID  k  =  2  <->  ( k  =  2  \/  k  =/=  2 ) )
404402, 403sylib 121 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  (
k  =  2  \/  k  =/=  2 ) )
405335, 399, 404mpjaodan 788 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  ( A  /L k )  =/=  0 )
406280adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  ( A  /L k )  e.  ZZ )
407 zapne 9261 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  /L
k )  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  /L k ) #  0  <->  ( A  /L k )  =/=  0 ) )
408406, 45, 407sylancl 410 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  (
( A  /L
k ) #  0  <->  ( A  /L k )  =/=  0 ) )
409405, 408mpbird 166 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  ( A  /L k ) #  0 )
410336, 289, 372, 269syl12anc 1226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  pCnt  N )  e.  NN0 )
411410nn0zd 9307 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  pCnt  N )  e.  ZZ )
412411adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  (
k  pCnt  N )  e.  ZZ )
413 expclzaplem 10475 . . . . . . . . . . . . . . 15  |-  ( ( ( A  /L
k )  e.  CC  /\  ( A  /L
k ) #  0  /\  ( k  pCnt  N
)  e.  ZZ )  ->  ( ( A  /L k ) ^ ( k  pCnt  N ) )  e.  {
x  e.  CC  |  x #  0 } )
414282, 409, 412, 413syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  k  ||  N )  ->  (
( A  /L
k ) ^ (
k  pCnt  N )
)  e.  { x  e.  CC  |  x #  0 } )
415 dvdsabsb 11746 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  ||  N  <->  k 
||  ( abs `  N
) ) )
416279, 289, 415syl2anc 409 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  ||  N  <->  k  ||  ( abs `  N ) ) )
417416notbid 657 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  ( -.  k  ||  N  <->  -.  k  ||  ( abs `  N
) ) )
418 pceq0 12249 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  Prime  /\  ( abs `  N )  e.  NN )  ->  (
( k  pCnt  ( abs `  N ) )  =  0  <->  -.  k  ||  ( abs `  N
) ) )
419336, 373, 418syl2anc 409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
( k  pCnt  ( abs `  N ) )  =  0  <->  -.  k  ||  ( abs `  N
) ) )
420289, 232syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  N  e.  QQ )
421 pcabs 12253 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  Prime  /\  N  e.  QQ )  ->  (
k  pCnt  ( abs `  N ) )  =  ( k  pCnt  N
) )
422336, 420, 421syl2anc 409 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  pCnt  ( abs `  N ) )  =  ( k  pCnt  N
) )
423422eqeq1d 2174 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
( k  pCnt  ( abs `  N ) )  =  0  <->  ( k  pCnt  N )  =  0 ) )
424417, 419, 4233bitr2rd 216 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
( k  pCnt  N
)  =  0  <->  -.  k  ||  N ) )
425424biimpar 295 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  -.  k  ||  N )  -> 
( k  pCnt  N
)  =  0 )
426425oveq2d 5857 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  -.  k  ||  N )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  =  ( ( A  /L
k ) ^ 0 ) )
427281adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  -.  k  ||  N )  -> 
( A  /L
k )  e.  CC )
428427exp0d 10578 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  -.  k  ||  N )  -> 
( ( A  /L k ) ^
0 )  =  1 )
429426, 428eqtrd 2198 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  -.  k  ||  N )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  =  1 )
430 ax-1cn 7842 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
431 1ap0 8484 . . . . . . . . . . . . . . . 16  |-  1 #  0
432 breq1 3984 . . . . . . . . . . . . . . . . 17  |-  ( x  =  1  ->  (
x #  0  <->  1 #  0
) )
433432elrab 2881 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  { x  e.  CC  |  x #  0 }  <->  ( 1  e.  CC  /\  1 #  0 ) )
434430, 431, 433mpbir2an 932 . . . . . . . . . . . . . . 15  |-  1  e.  { x  e.  CC  |  x #  0 }
435429, 434eqeltrdi 2256 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  /\  -.  k  ||  N )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  e.  {
x  e.  CC  |  x #  0 } )
436 dvdsdc 11734 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  N  e.  ZZ )  -> DECID  k 
||  N )
437383, 289, 436syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  -> DECID  k  ||  N )
438 exmiddc 826 . . . . . . . . . . . . . . 15  |-  (DECID  k  ||  N  ->  ( k  ||  N  \/  -.  k  ||  N ) )
439437, 438syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
k  ||  N  \/  -.  k  ||  N ) )
440414, 435, 439mpjaodan 788 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  Prime )  ->  (
( A  /L
k ) ^ (
k  pCnt  N )
)  e.  { x  e.  CC  |  x #  0 } )
441440adantlr 469 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  k  e.  Prime )  ->  (
( A  /L
k ) ^ (
k  pCnt  N )
)  e.  { x  e.  CC  |  x #  0 } )
442434a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  /\  -.  k  e.  Prime )  -> 
1  e.  { x  e.  CC  |  x #  0 } )
443441, 442, 275ifcldadc 3548 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  { x  e.  CC  |  x #  0 } )
444277, 443eqeltrd 2242 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
)  e.  { x  e.  CC  |  x #  0 } )
445 breq1 3984 . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  (
x #  0  <->  k #  0
) )
446445elrab 2881 . . . . . . . . . . . . 13  |-  ( k  e.  { x  e.  CC  |  x #  0 }  <->  ( k  e.  CC  /\  k #  0 ) )
447 breq1 3984 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
x #  0  <->  y #  0
) )
448447elrab 2881 . . . . . . . . . . . . 13  |-  ( y  e.  { x  e.  CC  |  x #  0 }  <->  ( y  e.  CC  /\  y #  0 ) )
449 mulcl 7876 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  CC  /\  y  e.  CC )  ->  ( k  x.  y
)  e.  CC )
450449ad2ant2r 501 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  CC  /\  k #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( k  x.  y )  e.  CC )
451 mulap0 8547 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  CC  /\  k #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( k  x.  y ) #  0 )
452450, 451jca 304 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  CC  /\  k #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( ( k  x.  y )  e.  CC  /\  ( k  x.  y ) #  0 ) )
453446, 448, 452syl2anb 289 . . . . . . . . . . . 12  |-  ( ( k  e.  { x  e.  CC  |  x #  0 }  /\  y  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( (
k  x.  y )  e.  CC  /\  (
k  x.  y ) #  0 ) )
454 breq1 3984 . . . . . . . . . . . . 13  |-  ( x  =  ( k  x.  y )  ->  (
x #  0  <->  ( k  x.  y ) #  0 ) )
455454elrab 2881 . . . . . . . . . . . 12  |-  ( ( k  x.  y )  e.  { x  e.  CC  |  x #  0 }  <->  ( ( k  x.  y )  e.  CC  /\  ( k  x.  y ) #  0 ) )
456453, 455sylibr 133 . . . . . . . . . . 11  |-  ( ( k  e.  { x  e.  CC  |  x #  0 }  /\  y  e. 
{ x  e.  CC  |  x #  0 }
)  ->  ( k  x.  y )  e.  {
x  e.  CC  |  x #  0 } )
457456adantl 275 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  /\  (
k  e.  { x  e.  CC  |  x #  0 }  /\  y  e. 
{ x  e.  CC  |  x #  0 }
) )  ->  (
k  x.  y )  e.  { x  e.  CC  |  x #  0 } )
45879, 251, 444, 457seqf 10392 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> { x  e.  CC  |  x #  0 } )
45987adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  -> 
( abs `  N
)  e.  NN )
460458, 459ffvelrnd 5620 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  {
x  e.  CC  |  x #  0 } )
461 breq1 3984 . . . . . . . . . 10  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  ->  ( x #  0 
<->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) #  0 ) )
462461elrab 2881 . . . . . . . . 9  |-  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  {
x  e.  CC  |  x #  0 }  <->  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC  /\  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) #  0 ) )
463462simprbi 273 . . . . . . . 8  |-  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  {
x  e.  CC  |  x #  0 }  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) #  0 )
464460, 463syl 14 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( A  gcd  N )  =  1 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) #  0 )
465464ex 114 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  gcd  N
)  =  1  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) #  0 ) )
466250, 465impbid 128 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) #  0  <->  ( A  gcd  N )  =  1 ) )
46750, 101, 4663bitrd 213 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  /L
N ) #  0  <->  ( A  gcd  N )  =  1 ) )
4684673expa 1193 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( ( A  /L N ) #  0  <->  ( A  gcd  N )  =  1 ) )
46947, 468bitr3d 189 . 2  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( ( A  /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
470 zdceq 9262 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
47160, 45, 470sylancl 410 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0 )
472 dcne 2346 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
473471, 472sylib 121 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  N  =/=  0
) )
47442, 469, 473mpjaodan 788 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2335   E.wrex 2444   {crab 2447    \ cdif 3112   ifcif 3519   {csn 3575   {cpr 3576   class class class wbr 3981    |-> cmpt 4042   -->wf 5183   ` cfv 5187  (class class class)co 5841   CCcc 7747   RRcr 7748   0cc0 7749   1c1 7750    + caddc 7752    x. cmul 7754    < clt 7929    <_ cle 7930    - cmin 8065   -ucneg 8066   # cap 8475    / cdiv 8564   NNcn 8853   2c2 8904   7c7 8909   8c8 8910   NN0cn0 9110   ZZcz 9187   ZZ>=cuz 9462   QQcq 9553   ...cfz 9940    mod cmo 10253    seqcseq 10376   ^cexp 10450   abscabs 10935    || cdvds 11723    gcd cgcd 11871   Primecprime 12035    pCnt cpc 12212    /Lclgs 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139  df-pc 12213  df-lgs 13499
This theorem is referenced by:  lgsabs1  13540  lgsprme0  13543  lgsdirnn0  13548
  Copyright terms: Public domain W3C validator