ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bi Unicode version

Theorem necon3bi 2386
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bi.1  |-  ( A  =  B  ->  ph )
Assertion
Ref Expression
necon3bi  |-  ( -. 
ph  ->  A  =/=  B
)

Proof of Theorem necon3bi
StepHypRef Expression
1 necon3bi.1 . . 3  |-  ( A  =  B  ->  ph )
21con3i 622 . 2  |-  ( -. 
ph  ->  -.  A  =  B )
3 df-ne 2337 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3sylibr 133 1  |-  ( -. 
ph  ->  A  =/=  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  pwne  4139  sucpw1ne3  7188  nltpnft  9750  ngtmnft  9753
  Copyright terms: Public domain W3C validator