ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdh Unicode version

Theorem nfdh 1518
Description: Deduce that  x is not free in  ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfdh.1  |-  ( ph  ->  A. x ph )
nfdh.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
nfdh  |-  ( ph  ->  F/ x ps )

Proof of Theorem nfdh
StepHypRef Expression
1 nfdh.1 . . 3  |-  ( ph  ->  A. x ph )
21nfi 1456 . 2  |-  F/ x ph
3 nfdh.2 . 2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
42, 3nfd 1517 1  |-  ( ph  ->  F/ x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1347   F/wnf 1454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1441  ax-gen 1443  ax-4 1504
This theorem depends on definitions:  df-bi 116  df-nf 1455
This theorem is referenced by:  hbsbd  1976
  Copyright terms: Public domain W3C validator