ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsbd Unicode version

Theorem hbsbd 1975
Description: Deduction version of hbsb 1942. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypotheses
Ref Expression
hbsbd.1  |-  ( ph  ->  A. x ph )
hbsbd.2  |-  ( ph  ->  A. z ph )
hbsbd.3  |-  ( ph  ->  ( ps  ->  A. z ps ) )
Assertion
Ref Expression
hbsbd  |-  ( ph  ->  ( [ y  /  x ] ps  ->  A. z [ y  /  x ] ps ) )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem hbsbd
StepHypRef Expression
1 hbsbd.2 . . . 4  |-  ( ph  ->  A. z ph )
21nfi 1455 . . 3  |-  F/ z
ph
3 hbsbd.3 . . . . . . 7  |-  ( ph  ->  ( ps  ->  A. z ps ) )
41, 3nfdh 1517 . . . . . 6  |-  ( ph  ->  F/ z ps )
52, 4nfim1 1564 . . . . 5  |-  F/ z ( ph  ->  ps )
65nfsb 1939 . . . 4  |-  F/ z [ y  /  x ] ( ph  ->  ps )
7 hbsbd.1 . . . . . 6  |-  ( ph  ->  A. x ph )
87sbrim 1949 . . . . 5  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  (
ph  ->  [ y  /  x ] ps ) )
98nfbii 1466 . . . 4  |-  ( F/ z [ y  /  x ] ( ph  ->  ps )  <->  F/ z ( ph  ->  [ y  /  x ] ps ) )
106, 9mpbi 144 . . 3  |-  F/ z ( ph  ->  [ y  /  x ] ps )
112, 10nfrimi 1518 . 2  |-  ( ph  ->  F/ z [ y  /  x ] ps )
1211nfrd 1513 1  |-  ( ph  ->  ( [ y  /  x ] ps  ->  A. z [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator