| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfd | Unicode version | ||
| Description: Deduce that |
| Ref | Expression |
|---|---|
| nfd.1 |
|
| nfd.2 |
|
| Ref | Expression |
|---|---|
| nfd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfd.1 |
. . . 4
| |
| 2 | 1 | nfri 1542 |
. . 3
|
| 3 | nfd.2 |
. . 3
| |
| 4 | 2, 3 | alrimih 1492 |
. 2
|
| 5 | df-nf 1484 |
. 2
| |
| 6 | 4, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfdh 1547 nfrimi 1548 nfnt 1679 cbv1h 1769 nfald 1783 a16nf 1889 dvelimALT 2038 dvelimfv 2039 nfsb4t 2042 hbeud 2076 |
| Copyright terms: Public domain | W3C validator |