| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfd | Unicode version | ||
| Description: Deduce that |
| Ref | Expression |
|---|---|
| nfd.1 |
|
| nfd.2 |
|
| Ref | Expression |
|---|---|
| nfd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfd.1 |
. . . 4
| |
| 2 | 1 | nfri 1533 |
. . 3
|
| 3 | nfd.2 |
. . 3
| |
| 4 | 2, 3 | alrimih 1483 |
. 2
|
| 5 | df-nf 1475 |
. 2
| |
| 6 | 4, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfdh 1538 nfrimi 1539 nfnt 1670 cbv1h 1760 nfald 1774 a16nf 1880 dvelimALT 2029 dvelimfv 2030 nfsb4t 2033 hbeud 2067 |
| Copyright terms: Public domain | W3C validator |