Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfd | Unicode version |
Description: Deduce that is not free in in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfd.1 | |
nfd.2 |
Ref | Expression |
---|---|
nfd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfd.1 | . . . 4 | |
2 | 1 | nfri 1507 | . . 3 |
3 | nfd.2 | . . 3 | |
4 | 2, 3 | alrimih 1457 | . 2 |
5 | df-nf 1449 | . 2 | |
6 | 4, 5 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfdh 1512 nfrimi 1513 nfnt 1644 cbv1h 1734 nfald 1748 a16nf 1854 dvelimALT 1998 dvelimfv 1999 nfsb4t 2002 hbeud 2036 |
Copyright terms: Public domain | W3C validator |