| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oplem1 | Unicode version | ||
| Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| oplem1.1 |
|
| oplem1.2 |
|
| oplem1.3 |
|
| oplem1.4 |
|
| Ref | Expression |
|---|---|
| oplem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oplem1.1 |
. 2
| |
| 2 | idd 21 |
. . 3
| |
| 3 | oplem1.2 |
. . . . 5
| |
| 4 | ax-1 6 |
. . . . . 6
| |
| 5 | oplem1.4 |
. . . . . . 7
| |
| 6 | 5 | biimprcd 160 |
. . . . . 6
|
| 7 | 4, 6 | jaoi 717 |
. . . . 5
|
| 8 | 3, 7 | syl 14 |
. . . 4
|
| 9 | oplem1.3 |
. . . 4
| |
| 10 | 8, 9 | imbitrrdi 162 |
. . 3
|
| 11 | 2, 10 | jaod 718 |
. 2
|
| 12 | 1, 11 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: preqr1g 3797 preqr1 3799 |
| Copyright terms: Public domain | W3C validator |