| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oplem1 | Unicode version | ||
| Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| oplem1.1 | 
 | 
| oplem1.2 | 
 | 
| oplem1.3 | 
 | 
| oplem1.4 | 
 | 
| Ref | Expression | 
|---|---|
| oplem1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oplem1.1 | 
. 2
 | |
| 2 | idd 21 | 
. . 3
 | |
| 3 | oplem1.2 | 
. . . . 5
 | |
| 4 | ax-1 6 | 
. . . . . 6
 | |
| 5 | oplem1.4 | 
. . . . . . 7
 | |
| 6 | 5 | biimprcd 160 | 
. . . . . 6
 | 
| 7 | 4, 6 | jaoi 717 | 
. . . . 5
 | 
| 8 | 3, 7 | syl 14 | 
. . . 4
 | 
| 9 | oplem1.3 | 
. . . 4
 | |
| 10 | 8, 9 | imbitrrdi 162 | 
. . 3
 | 
| 11 | 2, 10 | jaod 718 | 
. 2
 | 
| 12 | 1, 11 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: preqr1g 3796 preqr1 3798 | 
| Copyright terms: Public domain | W3C validator |