ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1g Unicode version

Theorem preqr1g 3746
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3748. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
preqr1g  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  A  =  B ) )

Proof of Theorem preqr1g
StepHypRef Expression
1 prid1g 3680 . . . . . . 7  |-  ( A  e.  _V  ->  A  e.  { A ,  C } )
2 eleq2 2230 . . . . . . 7  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  e. 
{ A ,  C } 
<->  A  e.  { B ,  C } ) )
31, 2syl5ibcom 154 . . . . . 6  |-  ( A  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  A  e.  { B ,  C }
) )
4 elprg 3596 . . . . . 6  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
53, 4sylibd 148 . . . . 5  |-  ( A  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) ) )
65adantr 274 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) ) )
76imp 123 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  { A ,  C }  =  { B ,  C } )  -> 
( A  =  B  \/  A  =  C ) )
8 prid1g 3680 . . . . . . 7  |-  ( B  e.  _V  ->  B  e.  { B ,  C } )
9 eleq2 2230 . . . . . . 7  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  e. 
{ A ,  C } 
<->  B  e.  { B ,  C } ) )
108, 9syl5ibrcom 156 . . . . . 6  |-  ( B  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  B  e.  { A ,  C }
) )
11 elprg 3596 . . . . . 6  |-  ( B  e.  _V  ->  ( B  e.  { A ,  C }  <->  ( B  =  A  \/  B  =  C ) ) )
1210, 11sylibd 148 . . . . 5  |-  ( B  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) ) )
1312adantl 275 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) ) )
1413imp 123 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  { A ,  C }  =  { B ,  C } )  -> 
( B  =  A  \/  B  =  C ) )
15 eqcom 2167 . . 3  |-  ( A  =  B  <->  B  =  A )
16 eqeq2 2175 . . 3  |-  ( A  =  C  ->  ( B  =  A  <->  B  =  C ) )
177, 14, 15, 16oplem1 965 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  { A ,  C }  =  { B ,  C } )  ->  A  =  B )
1817ex 114 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   _Vcvv 2726   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  preqr2g  3747
  Copyright terms: Public domain W3C validator