| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqr1g | Unicode version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3846. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| Ref | Expression |
|---|---|
| preqr1g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 3770 |
. . . . . . 7
| |
| 2 | eleq2 2293 |
. . . . . . 7
| |
| 3 | 1, 2 | syl5ibcom 155 |
. . . . . 6
|
| 4 | elprg 3686 |
. . . . . 6
| |
| 5 | 3, 4 | sylibd 149 |
. . . . 5
|
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | 6 | imp 124 |
. . 3
|
| 8 | prid1g 3770 |
. . . . . . 7
| |
| 9 | eleq2 2293 |
. . . . . . 7
| |
| 10 | 8, 9 | syl5ibrcom 157 |
. . . . . 6
|
| 11 | elprg 3686 |
. . . . . 6
| |
| 12 | 10, 11 | sylibd 149 |
. . . . 5
|
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 13 | imp 124 |
. . 3
|
| 15 | eqcom 2231 |
. . 3
| |
| 16 | eqeq2 2239 |
. . 3
| |
| 17 | 7, 14, 15, 16 | oplem1 981 |
. 2
|
| 18 | 17 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: preqr2g 3845 |
| Copyright terms: Public domain | W3C validator |