| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | Unicode version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| Ref | Expression |
|---|---|
| jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | jaod.2 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | jaoi 717 |
. 2
|
| 6 | 5 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 719 jaao 720 orel2 727 pm2.621 748 mtord 784 jaodan 798 pm2.63 801 pm2.74 808 dedlema 971 dedlemb 972 oplem1 977 ifnebibdc 3604 opthpr 3802 exmid1stab 4241 trsucss 4458 ordsucim 4536 onsucelsucr 4544 0elnn 4655 xpsspw 4775 relop 4816 fununi 5326 poxp 6290 nntri1 6554 nnsseleq 6559 nnmordi 6574 nnaordex 6586 nnm00 6588 swoord2 6622 nneneq 6918 exmidonfinlem 7260 elni2 7381 prubl 7553 distrlem4prl 7651 distrlem4pru 7652 ltxrlt 8092 recexre 8605 remulext1 8626 mulext1 8639 un0addcl 9282 un0mulcl 9283 elnnz 9336 zleloe 9373 zindd 9444 uzsplit 10167 fzm1 10175 expcl2lemap 10643 expnegzap 10665 expaddzap 10675 expmulzap 10677 qsqeqor 10742 nn0opthd 10814 facdiv 10830 facwordi 10832 bcpasc 10858 recvguniq 11160 absexpzap 11245 maxabslemval 11373 xrmaxiflemval 11415 sumrbdclem 11542 summodc 11548 zsumdc 11549 prodrbdclem 11736 zproddc 11744 prodssdc 11754 fprodcl2lem 11770 fprodsplitsn 11798 ordvdsmul 11999 gcdaddm 12151 nninfctlemfo 12207 lcmdvds 12247 dvdsprime 12290 prmdvdsexpr 12318 prmfac1 12320 pythagtriplem2 12435 4sqlem11 12570 unct 12659 domneq0 13828 baspartn 14286 reopnap 14782 coseq0q4123 15070 lgsdir2lem2 15270 decidin 15443 bj-charfun 15453 bj-nntrans 15597 bj-nnelirr 15599 bj-findis 15625 triap 15673 |
| Copyright terms: Public domain | W3C validator |