![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaod | Unicode version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaod.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
jaod |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | com12 30 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | jaod.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | com12 30 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | jaoi 717 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | com12 30 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpjaod 719 jaao 720 orel2 727 pm2.621 748 mtord 784 jaodan 798 pm2.63 801 pm2.74 808 dedlema 971 dedlemb 972 oplem1 977 ifnebibdc 3601 opthpr 3799 exmid1stab 4238 trsucss 4455 ordsucim 4533 onsucelsucr 4541 0elnn 4652 xpsspw 4772 relop 4813 fununi 5323 poxp 6287 nntri1 6551 nnsseleq 6556 nnmordi 6571 nnaordex 6583 nnm00 6585 swoord2 6619 nneneq 6915 exmidonfinlem 7255 elni2 7376 prubl 7548 distrlem4prl 7646 distrlem4pru 7647 ltxrlt 8087 recexre 8599 remulext1 8620 mulext1 8633 un0addcl 9276 un0mulcl 9277 elnnz 9330 zleloe 9367 zindd 9438 uzsplit 10161 fzm1 10169 expcl2lemap 10625 expnegzap 10647 expaddzap 10657 expmulzap 10659 qsqeqor 10724 nn0opthd 10796 facdiv 10812 facwordi 10814 bcpasc 10840 recvguniq 11142 absexpzap 11227 maxabslemval 11355 xrmaxiflemval 11396 sumrbdclem 11523 summodc 11529 zsumdc 11530 prodrbdclem 11717 zproddc 11725 prodssdc 11735 fprodcl2lem 11751 fprodsplitsn 11779 ordvdsmul 11980 gcdaddm 12124 nninfctlemfo 12180 lcmdvds 12220 dvdsprime 12263 prmdvdsexpr 12291 prmfac1 12293 pythagtriplem2 12407 4sqlem11 12542 unct 12602 domneq0 13771 baspartn 14229 reopnap 14725 coseq0q4123 15010 lgsdir2lem2 15186 decidin 15359 bj-charfun 15369 bj-nntrans 15513 bj-nnelirr 15515 bj-findis 15541 triap 15589 |
Copyright terms: Public domain | W3C validator |