Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jaod | Unicode version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 | |
jaod.2 |
Ref | Expression |
---|---|
jaod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 | . . . 4 | |
2 | 1 | com12 30 | . . 3 |
3 | jaod.2 | . . . 4 | |
4 | 3 | com12 30 | . . 3 |
5 | 2, 4 | jaoi 706 | . 2 |
6 | 5 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpjaod 708 jaao 709 orel2 716 pm2.621 737 mtord 773 jaodan 787 pm2.63 790 pm2.74 797 dedlema 959 dedlemb 960 oplem1 965 opthpr 3751 trsucss 4400 ordsucim 4476 onsucelsucr 4484 0elnn 4595 xpsspw 4715 relop 4753 fununi 5255 poxp 6196 nntri1 6460 nnsseleq 6465 nnmordi 6480 nnaordex 6491 nnm00 6493 swoord2 6527 nneneq 6819 exmidonfinlem 7145 elni2 7251 prubl 7423 distrlem4prl 7521 distrlem4pru 7522 ltxrlt 7960 recexre 8472 remulext1 8493 mulext1 8506 un0addcl 9143 un0mulcl 9144 elnnz 9197 zleloe 9234 zindd 9305 uzsplit 10023 fzm1 10031 expcl2lemap 10463 expnegzap 10485 expaddzap 10495 expmulzap 10497 qsqeqor 10561 nn0opthd 10631 facdiv 10647 facwordi 10649 bcpasc 10675 recvguniq 10933 absexpzap 11018 maxabslemval 11146 xrmaxiflemval 11187 sumrbdclem 11314 summodc 11320 zsumdc 11321 prodrbdclem 11508 zproddc 11516 prodssdc 11526 fprodcl2lem 11542 fprodsplitsn 11570 ordvdsmul 11770 gcdaddm 11913 lcmdvds 12007 dvdsprime 12050 prmdvdsexpr 12078 prmfac1 12080 pythagtriplem2 12194 unct 12371 baspartn 12648 reopnap 13138 coseq0q4123 13355 lgsdir2lem2 13530 decidin 13638 bj-charfun 13649 bj-nntrans 13793 bj-nnelirr 13795 bj-findis 13821 exmid1stab 13840 triap 13868 |
Copyright terms: Public domain | W3C validator |