| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | Unicode version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| Ref | Expression |
|---|---|
| jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | jaod.2 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | jaoi 718 |
. 2
|
| 6 | 5 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 720 jaao 721 orel2 728 pm2.621 749 mtord 785 jaodan 799 pm2.63 802 pm2.74 809 dedlema 972 dedlemb 973 oplem1 978 ifnebibdc 3615 opthpr 3813 exmid1stab 4253 trsucss 4471 ordsucim 4549 onsucelsucr 4557 0elnn 4668 xpsspw 4788 relop 4829 fununi 5343 poxp 6320 nntri1 6584 nnsseleq 6589 nnmordi 6604 nnaordex 6616 nnm00 6618 swoord2 6652 nneneq 6956 exmidonfinlem 7303 elni2 7429 prubl 7601 distrlem4prl 7699 distrlem4pru 7700 ltxrlt 8140 recexre 8653 remulext1 8674 mulext1 8687 un0addcl 9330 un0mulcl 9331 elnnz 9384 zleloe 9421 zindd 9493 uzsplit 10216 fzm1 10224 expcl2lemap 10698 expnegzap 10720 expaddzap 10730 expmulzap 10732 qsqeqor 10797 nn0opthd 10869 facdiv 10885 facwordi 10887 bcpasc 10913 recvguniq 11339 absexpzap 11424 maxabslemval 11552 xrmaxiflemval 11594 sumrbdclem 11721 summodc 11727 zsumdc 11728 prodrbdclem 11915 zproddc 11923 prodssdc 11933 fprodcl2lem 11949 fprodsplitsn 11977 ordvdsmul 12178 gcdaddm 12338 nninfctlemfo 12394 lcmdvds 12434 dvdsprime 12477 prmdvdsexpr 12505 prmfac1 12507 pythagtriplem2 12622 4sqlem11 12757 unct 12846 domneq0 14067 baspartn 14555 reopnap 15051 coseq0q4123 15339 lgsdir2lem2 15539 decidin 15770 bj-charfun 15780 bj-nntrans 15924 bj-nnelirr 15926 bj-findis 15952 triap 16005 |
| Copyright terms: Public domain | W3C validator |