| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | Unicode version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| Ref | Expression |
|---|---|
| jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | jaod.2 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | jaoi 718 |
. 2
|
| 6 | 5 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 720 jaao 721 orel2 728 pm2.621 749 mtord 785 jaodan 799 pm2.63 802 pm2.74 809 dedlema 972 dedlemb 973 oplem1 978 ifnebibdc 3625 opthpr 3826 exmid1stab 4268 trsucss 4488 ordsucim 4566 onsucelsucr 4574 0elnn 4685 xpsspw 4805 relop 4846 fununi 5361 poxp 6341 nntri1 6605 nnsseleq 6610 nnmordi 6625 nnaordex 6637 nnm00 6639 swoord2 6673 nneneq 6979 exmidonfinlem 7332 elni2 7462 prubl 7634 distrlem4prl 7732 distrlem4pru 7733 ltxrlt 8173 recexre 8686 remulext1 8707 mulext1 8720 un0addcl 9363 un0mulcl 9364 elnnz 9417 zleloe 9454 zindd 9526 uzsplit 10249 fzm1 10257 expcl2lemap 10733 expnegzap 10755 expaddzap 10765 expmulzap 10767 qsqeqor 10832 nn0opthd 10904 facdiv 10920 facwordi 10922 bcpasc 10948 recvguniq 11421 absexpzap 11506 maxabslemval 11634 xrmaxiflemval 11676 sumrbdclem 11803 summodc 11809 zsumdc 11810 prodrbdclem 11997 zproddc 12005 prodssdc 12015 fprodcl2lem 12031 fprodsplitsn 12059 ordvdsmul 12260 gcdaddm 12420 nninfctlemfo 12476 lcmdvds 12516 dvdsprime 12559 prmdvdsexpr 12587 prmfac1 12589 pythagtriplem2 12704 4sqlem11 12839 unct 12928 domneq0 14149 baspartn 14637 reopnap 15133 coseq0q4123 15421 lgsdir2lem2 15621 upgrpredgv 15850 decidin 15933 bj-charfun 15942 bj-nntrans 16086 bj-nnelirr 16088 bj-findis 16114 triap 16170 |
| Copyright terms: Public domain | W3C validator |