![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaod | Unicode version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
Ref | Expression |
---|---|
jaod.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaod.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
jaod |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | com12 30 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | jaod.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | com12 30 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | jaoi 716 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | com12 30 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpjaod 718 jaao 719 orel2 726 pm2.621 747 mtord 783 jaodan 797 pm2.63 800 pm2.74 807 dedlema 969 dedlemb 970 oplem1 975 opthpr 3774 exmid1stab 4210 trsucss 4425 ordsucim 4501 onsucelsucr 4509 0elnn 4620 xpsspw 4740 relop 4779 fununi 5286 poxp 6235 nntri1 6499 nnsseleq 6504 nnmordi 6519 nnaordex 6531 nnm00 6533 swoord2 6567 nneneq 6859 exmidonfinlem 7194 elni2 7315 prubl 7487 distrlem4prl 7585 distrlem4pru 7586 ltxrlt 8025 recexre 8537 remulext1 8558 mulext1 8571 un0addcl 9211 un0mulcl 9212 elnnz 9265 zleloe 9302 zindd 9373 uzsplit 10094 fzm1 10102 expcl2lemap 10534 expnegzap 10556 expaddzap 10566 expmulzap 10568 qsqeqor 10633 nn0opthd 10704 facdiv 10720 facwordi 10722 bcpasc 10748 recvguniq 11006 absexpzap 11091 maxabslemval 11219 xrmaxiflemval 11260 sumrbdclem 11387 summodc 11393 zsumdc 11394 prodrbdclem 11581 zproddc 11589 prodssdc 11599 fprodcl2lem 11615 fprodsplitsn 11643 ordvdsmul 11843 gcdaddm 11987 lcmdvds 12081 dvdsprime 12124 prmdvdsexpr 12152 prmfac1 12154 pythagtriplem2 12268 unct 12445 baspartn 13589 reopnap 14077 coseq0q4123 14294 lgsdir2lem2 14469 decidin 14588 bj-charfun 14598 bj-nntrans 14742 bj-nnelirr 14744 bj-findis 14770 triap 14816 |
Copyright terms: Public domain | W3C validator |