| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | Unicode version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| Ref | Expression |
|---|---|
| jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | jaod.2 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | jaoi 721 |
. 2
|
| 6 | 5 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 723 jaao 724 orel2 731 pm2.621 752 mtord 788 jaodan 802 pm2.63 805 pm2.74 812 dedlema 975 dedlemb 976 oplem1 981 ifnebibdc 3648 opthpr 3850 exmid1stab 4292 trsucss 4514 ordsucim 4592 onsucelsucr 4600 0elnn 4711 xpsspw 4831 relop 4872 fununi 5389 poxp 6378 nntri1 6642 nnsseleq 6647 nnmordi 6662 nnaordex 6674 nnm00 6676 swoord2 6710 nneneq 7018 exmidonfinlem 7371 elni2 7501 prubl 7673 distrlem4prl 7771 distrlem4pru 7772 ltxrlt 8212 recexre 8725 remulext1 8746 mulext1 8759 un0addcl 9402 un0mulcl 9403 elnnz 9456 zleloe 9493 zindd 9565 uzsplit 10288 fzm1 10296 expcl2lemap 10773 expnegzap 10795 expaddzap 10805 expmulzap 10807 qsqeqor 10872 nn0opthd 10944 facdiv 10960 facwordi 10962 bcpasc 10988 recvguniq 11506 absexpzap 11591 maxabslemval 11719 xrmaxiflemval 11761 sumrbdclem 11888 summodc 11894 zsumdc 11895 prodrbdclem 12082 zproddc 12090 prodssdc 12100 fprodcl2lem 12116 fprodsplitsn 12144 ordvdsmul 12345 gcdaddm 12505 nninfctlemfo 12561 lcmdvds 12601 dvdsprime 12644 prmdvdsexpr 12672 prmfac1 12674 pythagtriplem2 12789 4sqlem11 12924 unct 13013 domneq0 14236 baspartn 14724 reopnap 15220 coseq0q4123 15508 lgsdir2lem2 15708 upgrpredgv 15944 wlk1walkdom 16070 decidin 16161 bj-charfun 16170 bj-nntrans 16314 bj-nnelirr 16316 bj-findis 16342 triap 16397 |
| Copyright terms: Public domain | W3C validator |