| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaod | Unicode version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.) |
| Ref | Expression |
|---|---|
| jaod.1 |
|
| jaod.2 |
|
| Ref | Expression |
|---|---|
| jaod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaod.1 |
. . . 4
| |
| 2 | 1 | com12 30 |
. . 3
|
| 3 | jaod.2 |
. . . 4
| |
| 4 | 3 | com12 30 |
. . 3
|
| 5 | 2, 4 | jaoi 718 |
. 2
|
| 6 | 5 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaod 720 jaao 721 orel2 728 pm2.621 749 mtord 785 jaodan 799 pm2.63 802 pm2.74 809 dedlema 972 dedlemb 973 oplem1 978 ifnebibdc 3615 opthpr 3813 exmid1stab 4252 trsucss 4470 ordsucim 4548 onsucelsucr 4556 0elnn 4667 xpsspw 4787 relop 4828 fununi 5342 poxp 6318 nntri1 6582 nnsseleq 6587 nnmordi 6602 nnaordex 6614 nnm00 6616 swoord2 6650 nneneq 6954 exmidonfinlem 7301 elni2 7427 prubl 7599 distrlem4prl 7697 distrlem4pru 7698 ltxrlt 8138 recexre 8651 remulext1 8672 mulext1 8685 un0addcl 9328 un0mulcl 9329 elnnz 9382 zleloe 9419 zindd 9491 uzsplit 10214 fzm1 10222 expcl2lemap 10696 expnegzap 10718 expaddzap 10728 expmulzap 10730 qsqeqor 10795 nn0opthd 10867 facdiv 10883 facwordi 10885 bcpasc 10911 recvguniq 11306 absexpzap 11391 maxabslemval 11519 xrmaxiflemval 11561 sumrbdclem 11688 summodc 11694 zsumdc 11695 prodrbdclem 11882 zproddc 11890 prodssdc 11900 fprodcl2lem 11916 fprodsplitsn 11944 ordvdsmul 12145 gcdaddm 12305 nninfctlemfo 12361 lcmdvds 12401 dvdsprime 12444 prmdvdsexpr 12472 prmfac1 12474 pythagtriplem2 12589 4sqlem11 12724 unct 12813 domneq0 14034 baspartn 14522 reopnap 15018 coseq0q4123 15306 lgsdir2lem2 15506 decidin 15733 bj-charfun 15743 bj-nntrans 15887 bj-nnelirr 15889 bj-findis 15915 triap 15968 |
| Copyright terms: Public domain | W3C validator |